Spindle for machine tool

Tool driving or impacting – Impacting devices – With impact cushioning means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C173S213000, C173S216000, C073S162000, C451S047000

Reexamination Certificate

active

06481508

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to machine tools and in particular to spindles for machine tools such as those for lapping or testing of gears.
BACKGROUND OF THE INVENTION
Lapping is a well established process for finishing the tooth surfaces of bevel gears. It is a process that provides an economical alternative to other hard finishing processes for bevel gears and it has been used in all areas except for some aircraft applications.
In the lapping process, a pinion and ring gear are mounted, via appropriate workholding equipment, to respective spindles in a lapping machine, which has the same basic design as a testing machine. In most instances of rolling of the gearset, the pinion is the driving member and the ring gear is braked. The gears are rolled in mesh and lapping compound, which can be a mixture of oil (or water) and silicon carbide or similar, abrasive, is poured into the meshing zone. Examples of lapping and/or testing machines can be found in U.S. Pat. No. 3,099,901 to Hunkeler; U.S. Pat. No. 3,142,940 to Rebeski; U.S. Pat. Nos. 3,717,958 and 3,807,094 to Ellwanger et al.; U.S. Pat. No. 5,609,058 to Gnadt et al., and U.S. Pat. No. 6,120,355 to Stadtfeld et al.
Most lapping and testing machines have three degrees of freedom available for realizing relative motion between a ring gear and pinion. The first freedom being relative movement in the direction of the ring gear axis which shall be referred to as direction G or the G axis, the second freedom being relative movement in direction of the pinion axis which shall be referred to as direction H or the H axis, and the third degree of freedom being distance between the ring gear and pinion axes which shall be referred to as direction V or the V axis. The direction V is also known as the “hypoid offset.”
In lapping or testing processes, relative movement in the V and H directions effect positional changes in the contact pattern of the members of the gearset, in effect modifying the contact pattern. Lapping involves rotating the gear members in mesh and under a load with contact at a desired position on the tooth surfaces. Thus, the members are located at particular V and H positions along with a particular G axis position to effect the desired backlash. As the gear set is lapped, contact is shifted toward one of the outer (heel) or inner (toe) portions of the tooth surface by changing the V and H settings as necessary to effect such a shifting of the contact position. As V and H are changed to effect the shifting, the G axis position must also be changed to maintain the desired backlash.
Lapping operations may be carried out at pinion spindle speeds ranging from about 1000 RPM to about 4000 RPM. At the higher speeds (for example 2500-4000 RPM), imperfections in spindle construction, drive train construction, gear set motion transmission error, or running conditions, although slight, can be magnified to produce undesirable periodic changes in driving moments which can build to amplitude levels such that the tooth bearing patterns in the finished product become difficult to control by the lapping process.
One solution to the above problem is addressed in U.S. Pat. No. 3,807,094 to Ellwanger et al. wherein a lapping machine comprises an elastomeric coupling mounted between a pair of mounting blocks on the spindle associated with a braking means (usually the driven spindle to which a gear member is mounted). The elastomeric coupling twists, thus allowing one mounting block to rotate relative to the other mounting block, to isolate and absorb any aberrations in rotational moments due to braking of the spindle or other imperfections as discussed above.
The elastomeric coupling discussed above exhibits a fixed combination of damping and spring characteristics which are not necessarily well matched to the spindle and gear inertia. Therefore, where undesirable effects are best isolated and absorbed by controlling the total system dynamics in terms of inertia, damping and spring rate, an elastomeric coupling may provide little relief of the problem.
It is known for machines to employ a mechanical brake on the gear spindle, or electronic torque control on the gear spindle motor, to control the load applied between the teeth of the gearset during testing or lapping. However, these methods have not led to good control of the dynamic load variations occurring as a function of gear or pinion rotation and tooth-to-tooth rolling transitions.
It is an object of the present invention to provide an improved machine tool spindle exhibiting optimized dynamic properties comprised of spring, damping and inertial elements. It is also an object of the present invention to provide an electronic control scheme to apply to the inventive spindle as a further means. of controlling the dynamic force between the gear set members.
These and other objects and advantages of the present invention will appear more clearly from the following description and the accompanying drawings.
SUMMARY OF THE INVENTION
The present invention is directed to a spindle for a machine tool comprising a rear spindle portion and a forward spindle portion with each of the rear spindle portion and the forward spindle portion being rotatable relative to one another about the same axis. The inventive spindle includes one or more spring elements extending between the rear spindle portion and the forward spindle portion whereby with the forward spindle portion and the rear spindle portion rotating at a predetermined amount and with the rotation of the forward spindle portion being constrained at that amount, an additional rotation applied to the rear spindle portion results in a deflection of the springs thereby effecting a torque between the forward and the rear spindle portions.
The present invention also includes a control method which has as its objective to control the position of, not the torque applied to, one of the spindles, usually the gear member spindle. In this method, the gear member spindle position is controlled relative to the pinion member spindle position by means such as computer numerical control (CNC). As the pinion member is turned at some speed, the gear member is kept in coordination with the pinion (according to their ratio) by the CNC control. The gear member spindle can be commanded to include additional rotational components which, in effect, advance or retard the gear rotation relative to the pinion.


REFERENCES:
patent: 3099901 (1963-08-01), Hunkeler
patent: 3142940 (1964-08-01), Rebeski
patent: 3717958 (1973-02-01), Ellwanger et al.
patent: 3807094 (1974-04-01), Ellwanger et al.
patent: 4788476 (1988-11-01), Ginier
patent: 5609058 (1997-03-01), Gnadt et al.
patent: 6120355 (2000-09-01), Stadtfeld et al.
patent: 0061086 (1982-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spindle for machine tool does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spindle for machine tool, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spindle for machine tool will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2986195

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.