Spinal cord stimulation lead with an anode guard

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06754539

ABSTRACT:

OF THE INVENTION
The present invention relates to an epidural stimulation lead, and in particular, to an epidural stimulation lead having at least one electrode suited to serve as an anode guard relative to a substantially encircled cathode.
BACKGROUND OF THE INVENTION
Application of specific electrical fields to spinal nerve roots, spinal cord, and other nerve bundles for the purpose of chronic pain control has been actively practiced since the 1960s. While a precise understanding of the interaction between the applied electrical energy and the nervous tissue is not fully appreciated, it is known that application of an electrical field to spinal nervous tissue (i.e., spinal nerve roots and spinal cord bundles) can effectively mask certain types of pain transmitted from regions of the body associated with the stimulated tissue. More specifically, applying particularized electrical energy to the spinal cord associated with regions of the body afflicted with chronic pain can induce paresthesia, or a subjective sensation of numbness or tingling, in the afflicted bodily regions. This paresthesia can effectively mask the transmission of non-acute pain sensations to the brain.
It is known that each exterior region, or each dermatome, of the human body is associated with a particular spinal nerve root at a particular longitudinal spinal position. The head and neck regions are associated with C
2
-C
8
, the back regions extends from C
2
-S
3
, the central diaphragm is associated with spinal nerve roots between C
3
and C
5
, the upper extremities are correspond to C
5
and T
1
, the thoracic wall extends from T
1
to T
11
, the peripheral diaphragm is between T
6
and T
11
, the abdominal wall is associated with T
6
-L
1
, lower extremities are located from L
2
to S
2
, and the perineum from L
4
to S
4
. By example, to address chronic pain sensations that commonly focus on the lower back and lower extremities, a specific energy field can usually be applied to a region between bony level T
8
and T
10
. As should be understood, successful pain management and the avoidance of stimulation in unafflicted regions necessarily requires the applied electric field to be properly positioned longitudinally along the dorsal column.
Positioning of an applied electrical field relative to a physiological midline is equally important. Nerve fibers extend between the brain and a nerve root along the same side of the dorsal column as the peripheral areas the fibers represent. Pain that is concentrated on only one side of the body is “unilateral” in nature. To address unilateral pain, electrical energy is applied to neural structures on the side of a dorsal column that directly corresponds to a side of the body subject to pain. Pain that is present on both sides of a patient is “bilateral.” Accordingly, bilateral pain is addressed through either an application of electrical energy along a patient's physiological midline or an application of electrical energy that transverses the physiological midline.
Pain-managing electrical energy is commonly delivered through electrodes positioned external to the dura layer surrounding the spinal cord. The electrodes are carried by two primary vehicles: a percutaneous catheter and a laminotomy lead.
Percutaneous catheters, or percutaneous leads, commonly have three or more, equally-spaced electrodes, which are placed above the dura layer through the use of a Touhy-like needle. For insertion, the Touhy-like needle is passed through the skin, between desired vertebrae, to open above the dura layer.
For unilateral pain, percutaneous leads are positioned on a side of a dorsal column corresponding to the “afflicted” side of the body, as discussed above, and for bilateral pain, a single percutaneous lead is positioned along the patient midline (or two or more leads are positioned on each side of the midline).
Laminotomy leads have a paddle configuration and typically possess a plurality of electrodes (for example, two, four, eight, or sixteen) arranged in one or more columns. An example of a sixteen-electrode laminotomy lead is shown in FIG.
1
.
Implanted laminotomy leads are commonly transversely centered over the physiological midline of a patient. In such position, multiple columns of electrodes are well suited to address both unilateral and bilateral pain, where electrical energy may be administered using either column independently (on either side of the midline) or administered using both columns to create an electric field which traverses the midline. A multi-column laminotomy lead enables reliable positioning of a plurality of electrodes, and in particular, a plurality of electrode columns that do not readily deviate from an initial implantation position.
Laminotomy leads require a surgical procedure for implantation. The surgical procedure, or partial laminectomy, requires the resection and removal of certain vertebral tissue to allow both access to the dura and proper positioning of a laminotomy lead. The laminotomy lead offers a more stable platform, which is further capable of being sutured in place, that tends to migrate less in the operating environment of the human body.
Percutaneous leads require a less-invasive implantation method and, with a plurality of leads, provide a user the ability to create almost any electrode array. Although likely more stable during use, laminotomy leads do not offer an opportunity for electrode array variance due to the predetermined structure which defines their electrode arrays.
To supply suitable pain-managing electrical energy, stimulation leads are connected to multi-programmable stimulation systems, or energy sources (not shown). Typically, such systems enable each electrode of a connected stimulation lead to be set as an anode (+), a cathode (−), or in an OFF-state. As is well known, an electric current “flows” from an anode to a cathode. Consequently, using the laminotomy lead of
FIG. 1
as an example, a range of very simple to very complex electric fields can be created by defining different electrodes in various combinations of (+), (−), and OFF. Of course, in any instance, a functional combination must include at least one anode and at least one cathode.
Notwithstanding the range of electric fields that are possible with conventional stimulation leads, in certain instances it is necessary to concentrate electrical energy at a particular point, or over a small region. As an example of such occasion, assume pain-managing electrical energy Is applied at or about T
8
to address only localized lower back pain. At T
8
, however, spinal nervous tissue corresponding to the patient's lower extremities commingles with the specific spinal nervous tissue associated with the lower back. Moreover, it is common that the lower back-related spinal nervous tissue is deeply embedded within the combined spinal nervous tissue. Accordingly, it becomes desirable to focus applied electrical energy to the targeted nervous tissue to (i) reach the deeply situated target nervous tissue and (ii) avoid undesirable stimulation of unafflicted regions.
Accordingly, a need exists for a stimulation lead that includes a structural arrangement that facilitates a concentration of delivered electrical energy at a point, i.e., for a given electrode, or over a small region, i.e., for a plurality of electrodes.
SUMMARY OF THE INVENTION
At least one aspect of the present invention is drawn to a stimulation lead having a plurality of terminals, a plurality of electrodes carried by a body, and a plurality of conductors, as a conductor electrically couples one terminal with a respective electrode. The plurality of electrodes includes a first electrode and a second electrode, whereby the second electrode substantially encircles at least the first electrode.
An object of the present invention is to provide a electrical stimulation lead having at least two electrodes. Unlike known stimulation leads, however, an arrangement of the electrodes of the stimulation lead should facilitate operatively concentrating delivered electrical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spinal cord stimulation lead with an anode guard does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spinal cord stimulation lead with an anode guard, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spinal cord stimulation lead with an anode guard will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3347603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.