Spin valve magnetoresistive element with longitudinal exchange b

Dynamic magnetic information storage or retrieval – Head – Hall effect

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

338 32R, 324252, G11B 539, H01L 4308, G01R 3302

Patent

active

055284400

ABSTRACT:
An improved spin valve (SV) magnetoresistive element has its free ferromagnetic layer in the form of a central active region with defined edges and end regions that are contiguous with and abut the edges of the central active region. A layer of antiferromagnetic material, preferably a nickel-manganese (Ni--Mn) alloy, is formed on and in contact with the ferromagnetic material in the end regions for exchange coupling with the end regions to provide them with a longitudinal bias of their magnetizations. The pinned ferromagnetic layer in the SV element is pinned by exchange coupling with a different layer of antiferromagnetic material, preferably an iron-manganese (Fe--Mn) alloy. This material has a substantially different Neel temperature from that of the antiferromagnetic material on the end regions. The process for making the SV element includes heating to different predetermined temperatures in the presence of an applied magnetic field to orient the magnetizations of the free and pinned layers in the proper direction. The SV element may be used as a sensor for reading data in magnetic recording systems.

REFERENCES:
patent: 4949039 (1990-08-01), Grunberg
patent: 5159513 (1992-10-01), Dieny et al.
patent: 5206590 (1993-04-01), Dieny et al.
patent: 5287238 (1994-02-01), Baumgart et al.
patent: 5329413 (1994-07-01), Kondoh et al.
patent: 5436778 (1995-07-01), Lin et al.
Binasch et al., "Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange", Physical Review B, vol. 39, No. 7, Mar. 1, 1989, pp. 4828-4830.
Dieny et al., "Change in Conductance is the Fundamental Measure of Spin-Valve Magnetoresistance", Applied Physics Letters, vol. 61, No. 17, Oct. 26, 1992, pp. 2111-2113.
Dieny, "Quantitative Interpretation of Giant Magnetoresistance Properties of Permalloy-based Spin-Valve Structures", Europhysics Letters, vol. 17, No. 3, Jan. 14, 1992, pp. 261-267.
Dieny, "Classical Theory of Giant Magnetoresistance in Spin-Valve Multilayers: Influence of Thicknesses, Number of Periods, Bulk and Interfacial Spin-dependent Scattering", Journal of Physics:Condensed Matter, vol. 4, 1992, pp. 8009-8020.
Dieny et al., "Giant Magnetoresistance in Soft Ferromagnetic Multilayers", Physical Review B, vol. 43, No. 1, Jan. 1, 1991, pp. 1297-1300.
Levy, "Giant Magnetoresistance in Magnetic Layered and Granular Materials", Science, vol. 256, May 15, 1992, pp. 972-973.
Parkin et al., "Giant Magnetoresistance in Antiferromagnetic Co/Cu Multilayers", Applied Physics Letters, vol. 58, No. 23, Jun. 10, 1991, pp. 2710-2712.
Parkin et al., "Spin Engineering: Direct Determination of the Ruderman-Kittel-Kasuya-Yosida Far-field Range Function in Ruthenium", Physical Review B, vol. 44, No. 13, Oct. 1, 1991, pp. 7131-7134.
Parkin et al., "Oscillations in Exchange Coupling and Magnetoresistance in Metallic Superlattice Structures: Co/Ru, Co/Cr, and Fe/Cr", Physical Review Letters, vol. 64, No. 19, May 7, 1990, pp. 2304-2307.
Parkin et al., "Oscillatory Magnetic Exchange Coupling Through Thin Copper Layers", Physical Review Letters, vol. 66, No. 16, Apr. 22, 1991, pp. 2152-2155.
Parkin, "Systematic Variation of the Strength and Oscillation Period of Indirect Magnetic Exchange Coupling through the 3d, 4d, and 5d Transition Metals", Physical Review Letters, vol. 67, No. 25, Dec. 16, 1991, pp. 3598-3601.
Parkin, "Giant Magnetoresistance and Oscillatory Interlayer Exchange Coupling in Copper Based Multilayers", Materials Research Society Symposium Proceedings, vol. 231, 1992, pp. 211-216.
Pennisi, "Magnetic Advantage: Magnetic Fields Make New Thin Films Better Conductors", Science News, vol. 142, Aug. 29, 1992, pp. 140-142.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spin valve magnetoresistive element with longitudinal exchange b does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spin valve magnetoresistive element with longitudinal exchange b, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spin valve magnetoresistive element with longitudinal exchange b will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-227578

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.