Coating apparatus – With means to centrifuge work
Reexamination Certificate
2002-10-23
2004-04-06
Crispino, Richard (Department: 1734)
Coating apparatus
With means to centrifuge work
C118S320000, C427S240000, C427S425000
Reexamination Certificate
active
06716285
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention relates to the field of spin coating, and in particular, the spin coating of chemical having uniform thickness onto a substrate.
2. Description of the Related Art
In a variety of fields, a thin film or coating of material on a substrate, such as data recording media or semiconductor wafers, is desired. In the field of fabricating semiconductor devices, for example, a thin layer of photoresist is commonly applied to a semiconductor wafer using a spin coating apparatus.
A typical spin coating apparatus comprises a chemical supply source, a coating element for introducing the chemical onto the substrate or wafer, and an exhaust element for removing excess chemical and contaminated air. Various properties and adaptations of spin coating apparatus are described in, for example, U.S. Pat. No. 6,165,267 issued Dec. 26, 2000 to Torczynski; U.S. Pat. No. 5,562,772 issued Oct. 8, 1996 to Neoh; U.S. Pat. No. 5,449,405 issued Sep. 12, 1995 to Cardinali et al.; U.S. Pat. No. 5,234,499 issued Aug. 10, 1993 to Sasaki et al.; U.S. Pat. No. 4,800,836 issued Jan. 31, 1989 to Yamamoto et al.; and U.S. Pat. No. 4,794,021 issued Dec. 27, 1988 to Potter, which are hereby incorporated herein by reference.
In typical prior art apparatus, the chemical supply source provides the desired chemical, commonly dissolved in a volatile solvent, to the coating element which includes a chemical dispensing means positioned above the wafer. The wafer, which is generally mounted on a rotatable chuck positioned within a coating bowl, receives the chemical from the chemical dispensing means, typically through one or more nozzles. The chemical is dispensed at or near the center of the wafer. The wafer on the chuck is then spun at high speed, at a particular rotation rate, using a motor assembly. This causes the chemical solution on the wafer to flow toward the edge of the wafer. As the solvent evaporates, the chemical solution becomes more and more viscous until the solution becomes so viscous it stops flowing. The remaining solvent eventually evaporates, leaving a thin film or coating on the wafer. The thickness of the chemical film on the wafer depends on a number of factors including, for example, the rate of rotation of the chuck and the rate at which the solvent evaporates.
It is known that if the solvent evaporates from a thinning film in a uniform manner, then the thickness of the resulting dry film will be of uniform thickness. Conversely, non-uniform solvent evaporation will result in a non-uniform film thickness. Solvent evaporation non-uniformity can be caused by non-uniformity in the gas flow over the spinning wafer. Because of the rotation, non-uniformities in the film thickness will tend to occur primarily in the radial direction rather than the circumferential direction.
To remove the evaporated solvent and excess chemical, a vacuum pump may be attached to the exhaust port to draw air into the coating bowl and over the exposed wafer surface, and then into the exhaust port and finally out of the spin coating apparatus into the vacuum pump system. In some cases, airflow is directed along the wafer underside into the exhaust port to minimize contamination of the wafer underside.
In a conventional spin coating apparatus, two main parameters govern the gas flow: the vacuum pumping rate and the rotation rate. Typical values used in the art are pumping rates of 250-1000 liters per minute (1 pm) and rotation rates of 0-5000 revolutions per minute (rpm). Because of the effect of viscosity, a swirling component of velocity is imparted by the substrate to the adjacent gas. This gas is centrifuged radially outward toward the outer edge of the substrate. The continuing removal of gas adjacent to the substrate in the radial direction draws air from the ambient supply above the substrate toward the surface to replace the displaced gas. At the same time, the vacuum pump system is removing gas via the exhaust port. Therefore, the airflow over the substrate is governed by the complex interaction of airflow due to the substrate pumping air by centrifuge action, airflow due to the vacuum pumping system, and the aerodynamic geometry of the spin coating apparatus.
In a conventional spin coating apparatus, the complex interaction of flows and geometry is known to result in the formation of wafer eddies. These eddies return a portion of the centrifuged gas back to the wafer surface. The changes in airflow above the wafer where the eddies are located causes the solvent to evaporate at a different rate than it would in the absence of such eddies. This local non-uniform rate of solvent evaporation results in non-uniform chemical film thickness.
The spin coating process is but one of many steps in the manufacturing of semiconductor devices. It is known in the art that even small thickness variations of the spun-on chemical film, on the order of {fraction (1/10)}
th
of one percent of the mean film thickness, can result in lower yields of suitable semiconductor devices. As the diameter of the semiconductor wafer increases, the uniformity of the thickness of the film becomes increasingly important.
It is common in the art to use complicated empirical strategies to achieve the required uniformity of film thickness. In some cases, for example, the dispensed chemical is heated slightly and the nozzle is moved over the wafer in a complicated trajectory during dispensing. Such devices can add considerable complexity and initial cost, and the heating and nozzle trajectory must be changed every time a new chemical is used or the wafer size is changed.
A variety of other devices have been designed in an attempt to improve the uniformity of film thickness. Many attempts have been made to slow the evaporation rate of the chemical solution on the wafer surface and to prevent local air disturbances at the wafer surface. In particular, multiple attempts to minimize or eliminate the surface effects from the ambient air by imposing a barrier, serving as a means to isolate the local air over the wafer, have been attempted. See, e.g., U.S. Pat. No. 6,261,635 issued Jul. 17, 2001 to Shirley; U.S. Pat. No. 6,238,735 issued May 29, 2001 to Mundal et al.; U.S. Pat. No. 5,472,502 issued Dec. 5, 1995 to Batchelder; U.S. Pat. No. 4,800,836 issued Jan. 31, 1989 to Yamamoto et al., and U.S. Pat. No. 4,587,139 issued May 6, 1986 to Hagan et al. These attempts, however, introduce additional complications by impeding the airflow above the wafer and often add considerable cost and complexity.
Significant surface effects that contribute to the non-uniformity of film thickness, known as Ekman spirals, are known in the art (see, e.g., 77 J. Appl. Phys. 2297
, The Connection Between-Hydrodynamic Stability of Gas Flow in Spin Coating and Coated Film Uniformity
, 1995). These spirals include both Type-I or “stationary” spirals, which rotate at the same speed as the wafer and thus do not move with respect to the wafer, and Type-II or “traveling” spirals, which do not rotate with the wafers and therefore move at considerable velocity with respect to the wafer surface. It is highly desirable to interfere with the formation of these Ekman spirals.
A second concern is contamination of the wafer surface by material such as droplets of chemical flung off the wafer during spinning. Airflow as described above can transport much of the excess chemical and solvent to the exhaust port. With conventional spin coating apparatus, high airflow rates can be required to prevent unacceptable wafer contamination. However, higher airflow generally means a higher risk of turbulence and eddy formation at the wafer surface. This can result in local variations of the solvent drying rate, and therefore a higher risk of undesirable thickness variations of the chemical film.
A third concern is contamination of the room environment by material such as volatile solvent or excess chemical. As in the case of wafer contamination, higher airflow rates can be required to prevent unacceptable room environment contamination. However, as already
Sun-Paduano Qing
Weyburne David William
Aüton William G.
Crispino Richard
Lazor Michelle Acevedo
The United States of America as represented by the Secretary of
LandOfFree
Spin coating of substrate with chemical does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spin coating of substrate with chemical, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spin coating of substrate with chemical will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3229127