Spent caustic pretreatment and enhanced oxidation process

Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C203S045000, C203S046000, C203S075000, C203S076000, C203S078000, C203S079000, C208S317000, C208S321000, C208S337000, C208S356000, C210S760000, C210S761000, C423S183000, C423S193000, C423S551000

Reexamination Certificate

active

06210583

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method for treatment of a spent caustic stream and in particular to treatment of the spent caustic stream for removal of organic contaminants to condition the caustic stream for more efficient and complete oxidation that better conditions the caustic stream for disposal.
2. Description of the Related Art
In the petroleum and petrochemical industries it is common to scrub gas mixtures that contain acid gas components, such as carbon dioxide (CO
2
) and hydrogen sulfide (H
2
S), to remove these components from such gas mixture before it is used for further processing purposes or otherwise disposed of as by venting to the atmosphere. An aqueous sodium hydroxide solution—i.e., a caustic solution—is commonly used for scrubbing of such gas mixtures. By reaction with the caustic solution, i.e. NaOH, acid gas components such as hydrogen sulfide and carbon dioxide are converted into sodium sulfide (Na
2
S), sodium hydrosulfide (NaHS), sodium carbonate (Na
2
CO
3
) and sodium bicarbonate (NaHCO
3
) which carry into the sodium hydroxide (NaOH) solution. Wherein the gas mixture to be scrubbed also contains hydrocarbon components (particularly C
4
, C
5
and higher molecular weight hydrocarbon) a portion of these hydrocarbon components also pass as such into the aqueous sodium hydroxide stream, each to the limit of its mutual solubility in solution.
One type of petrochemical operation wherein an aqueous sodium hydroxide solution is almost invariably used for gas scrubbing is in an ethylene production unit. In an ethylene production unit a saturated aliphatic hydrocarbon feed, such as ethane, propane or higher molecular weight hydrocarbon mixtures such as naphtha, atmospheric and/or vacuum gas oil, and the like, is heated at high temperatures in the presence of steam to crack the saturated hydrocarbon molecules down to lower molecular weight unsaturated hydrocarbons such as ethylene predominately, followed by propylene, and then various quantities of C
4
, C
5
and C
6
mono- and diolefinic hydrocarbons, with a lesser quantity of C
7
and higher molecular weight saturate and unsaturate aliphatic, alicyclic and aromatic hydrocarbon. During steam cracking, any sulfur containing compounds present in the hydrocarbon feed stream are converted into hydrogen sulfide and/or organically bound sulfur compounds and also a content of carbon dioxide is generated in the cracked gas mixture by the water gas shift reaction. The resultant gas mixture from steam cracking is then quenched to a lower temperature of from about 35 to 40° C., whereupon the major portion of its water and C
7
hydrocarbon content is condensed and separated from said gas mixture. After quenching, the remaining constituents of the gas mixture are conditioned by various steps of gas compression and refrigerative cooling to prepare it for cryogenic distillation whereby its ethylene, propylene and butenes contents will ultimately be recovered in essentially pure form for ultimate use as monomers in the production of various polymers, such as polyethylene, ethylene copolymers, polypropylene and the like.
One step required to properly condition the cracked gas prior to its cryogenic distillation is to scrub the cracked gas essentially free of any acid gas components, such as hydrogen sulfide and carbon dioxide. This is accomplished at some interstage location of a multi-stage gas compression system and, on occasion post-compression, wherein the cracked gas stream is at a pressure from about 10 to about 30 atmospheres (atm) by contacting the compressed cracked gas stream with an aqueous sodium hydroxide solution by countercurrent contact in a gas-liquid contact vessel often referred to as an “absorber” or “scrubber.”
The aqueous sodium hydroxide solution after such gas scrubbing contact is referred to as a “spent caustic solution” and contains, in addition to sodium hydroxide, the sodium sulfide, sodium hydrosulfide, sodium carbonate and sodium bicarbonate that results from the removal of acid gas compounds from the so scrubbed cracked gas stream and also a significant content of dissolved aliphatic, mono- and di-olefinic, as well as cyclic hydrocarbon and various carbonyls, styrenics and other organic contaminants. In this condition the spent caustic stream presents various problems with respect to its environmental disposal. For example, polymers tend to form in the spent caustic solution as long as the solution contains dissolved polymer precursors at an elevated temperature. Aldol condensation of dissolved oxygenated hydrocarbons (carbonyls, such as aldehydes and ketones) produces polymeric products that are commonly referred to as a “red oil,” which is and remains partially soluble in a spent caustic solution that issues from the caustic scrubbing tower. Certain highly unsaturated hydrocarbons in the cracked gas, such as acetylenes and dienes (diolefinic hydrocarbons), that pass into the caustic solution in the scrubber may undergo addition type polymerization to various degrees., even to the point of a molecular weight which renders certain polymer species insoluble in the spent caustic solution such that they precipitate out of solution together with the aldol condensation polymers and may be removed from the spent caustic stream in a deoiling drum. In any event, the spent caustic solution removed from the scrubber, even following a deoiling drum treatment, contains in dissolved form a content of such condensation and addition types of prepolymer and polymer species which may later precipitate from the caustic solution as foulants of equipment surfaces that are later exposed to the spent caustic solution. From a disposal standpoint the sodium sulfide, sodium hydrosulfide contaminants as well as the dissolved hydrocarbon and other organic contaminants impart to the spent caustic stream too high of a chemical oxygen demand (COD) and/or biological oxygen demand (BOD) to allow for its environmentally acceptable disposal.
Accordingly, to reduce its COD and/or BOD, spent caustic streams are commonly subjected to an oxidation process to oxidize its organic contaminants and to oxidize its sulfide salts content to at least thiosulfates, and preferably to their highest oxidation state compounds. Such oxidation processes include wet air oxidation (“WAO”) processes wherein an oxygen containing gas, such as air, is contacted with spent caustic at an elevated temperature in a contacting column. In this context, the dissolved hydrocarbon prepolymer and polymer contaminants in the spent caustic cause major problems, particularly with respect to spent caustic streams issuing from the operation of an ethylene production unit. Specifically, heat exchanger surfaces and other interior working surfaces, such as in transfer lines and valves, in a WAO process that are exposed to direct contact with the spent caustic undergoing WAO treatment tend to become clogged and fouled with polymeric materials over time, which necessitates periodic shutdown and cleanup of the WAO unit. Therefore, it is desirable to first free the spent caustic from dissolved polymers and polymer precursors if polymer formation and fouling of a WAO unit is to be avoided.
Proposals have been set forth in the art for methods of pretreating the spent caustic, prior to its oxidizing treatment, that are intended to reduce this fouling problem. For example U.S. Pat. No. 5,268,104 proposes to first contact an ambient temperature spent caustic with gasoline in a mixing drum and then separate the spent caustic from the gasoline in a deoiling drum after which the spent caustic, from which 70-100% dispersed oil has purportedly been removed, is oxidized with an air/ozone mixture. Even so, in practice a spent caustic pretreated by this mixing drum-deoiling drum technique has still been found to present a fouling problem to the equipment surfaces of post-treatment units. U.S. Pat. No. 5,244,576 by DeRoeck et al. proposes a somewhat more elaborate method

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spent caustic pretreatment and enhanced oxidation process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spent caustic pretreatment and enhanced oxidation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spent caustic pretreatment and enhanced oxidation process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555146

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.