Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel
Reexamination Certificate
1999-09-30
2002-07-23
Hjerpe, Richard (Department: 2778)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Touch panel
C345S182000, C345S156000, C345S157000, C345S158000, C345S159000, C345S174000, C345S177000, C345S179000, C178S018010, C178S018020, C178S018030, C178S018040, C178S018050
Reexamination Certificate
active
06424338
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of computer pointing devices. More particularly, the present invention relates to an improved touch-based pointing device wherein the control gain or other operational features of the pointing device are dynamically adjusted to provide optimal performance for each pointing task.
BACKGROUND OF THE INVENTION
Although the keyboard remains the primary computer input device in a computer system, the prevalence of graphical user interfaces (GUIs) virtually requires the use of a mouse or other pointing device. A variety of pointing devices are known, including the mouse, trackball, joystick, and touchpad. Each of the aforementioned types of pointing devices have their own attendant advantages and disadvantages.
A mouse uses a roller ball and rollers for translating x- and y-axis movement of the mouse to x-y movement of an on-screen pointer. A mouse typically has a hand-sized housing and is operated by moving the mouse around on a flat surface such as a desktop or mouse pad. Common mechanisms for generating an electrical signal representative of x-y movement include opto-mechanical mechanisms which operate by means of rotating disks having radial slits and optical mechanisms which interpret variations in reflectance as the mouse is moved over a special grid. A mouse typically has one or more buttons located on the housing for activating various software features.
A major advantage of the mouse is that its use is fairly intuitive. However, drawbacks to the mouse have led to the development of alternative pointing devices. One drawback is the space required for a mouse. Because the mouse is not a stationary device, a relatively large amount of desktop space is required. Additionally, the mouse is generally not suitable for use with a portable computer because many mobile settings lack of a suitable operating surface.
The trackball somewhat alleviates the problems of the mouse. A trackball is essentially reversed from a mouse. The trackball employs a roller ball in a stationary housing and the cursor is controlled by turning the roller ball directly with the hand. Because the trackball is stationary, freestanding units typically require less desktop space than a mouse. Also, the stationary nature of the trackball makes it suitable for incorporation into the housing of a device such as a keyboard or portable computer. Trackballs often employ a large roller ball to achieve accurate cursor movement and ease of manipulation. This, however, requires a larger footprint and is suitable only where there are few or no space constraints. Trackballs may be reduced in size to accommodate the space limitations of a portable computer, however, the ergonomics and accuracy of small trackballs may be less than desired.
Small joystick-like pointing devices are also known. Such devices essentially have no footprint in that they may be located between the keys of a keyboard. These devices are operated by pushing a small stick or knob in the direction of desired cursor movement. Pressure transducers sense the direction of the push and move the cursor in the corresponding direction. Some devices sense the magnitude of the force as well as the direction of the force. In this manner, a user can control cursor speed by using varying degrees of force. Although such built-in pointing devices find widespread use in portable computers due to their almost nonexistent space requirements, they are more awkward than a mouse or trackball, particularly where fine cursor control is required. Also, the associated buttons are somewhat remotely located from the stick, making generating mouse clicks more difficult. This is especially so for pointer control tasks requiring a button press and x-y pointer movement to be performed simultaneously.
Touchpads are very intuitive pointing devices that eliminate many of the problems of the previously mentioned devices. Touchpads are stationary and compact, making them well suited for use as a built-in device for portable computers or keyboards. Touchpads are equally well suited for use as a self-contained, small footprint mouse alternative in desktop systems. Touchpads are flat, rectangular, stationary devices and typically employ a grid or matrix of capacitance sensors underneath a protective surface. Touchpads responding to direct pressure, e.g., using layered conductive or resistive sheets, are also known. Capacitance sensing touchpads sense the additional capacitance of a user's finger, but not a stylus, fingernail, pen, pencil, etc. Capacitance sensing touchpads may be used with a conductive stylus, pen, or brush-type device. Capacitance sensing touchpads may also be adapted for use with a nonconductive stylus by providing a conductive layer that is separated from the sensor matrix by a resilient compressible layer such as a foam, gel, or the like. Pressure exerted by the nonconductive stylus moves the conductive material into closer proximity of the sensor matrix as the resilient material is compressed.
Touchpads let a user control the cursor with only finger movement and require virtually none of the arm movement that a mouse or trackball demands. Touchpads also generally require no downward pressure. In fact, the capacitive effect of a finger may be sensed when it is near, but not touching the surface. Touchpads may be made pressure sensitive by sensing the surface area covered by a user's finger and interpreting the finger contact surface area as an indicium of the pressure exerted. This may be used to control, for example, pen or brush stroke width in a graphic creation software application environment, or to determine whether the necessary tapping force threshold for generating a mouse click is achieved.
As a user's fingertip is moved across the surface of a touchpad, the x-y movement is translated and the cursor follows the movement. Touchpads are primarily used as relative positioning devices and, accordingly, it is the change in x-y position that is tracked. Touchpads are certainly capable of being operated as absolute positioning devices wherein every position on the sensing surface corresponds to an absolute screen location in much the same manner as most drawing or digitizing tablets and touch screen overlays. However, given the typically small size of touchpads, an absolute positioning touchpad would have a very low resolution.
Mouse click commands may be emulated by tapping a finger on the touchpad surface. Buttons for generating mouse clicks are typically also provided. Buttons may be located on the housing of a free standing device or on the housing of a keyboard or portable computer having an integrated touchpad. Taps can also be performed by a switch responsive to downward pressure positioned underneath the touchpad surface. Touchpads are also advantageous as pointing devices in that they are typically very well sealed against environmental factors such as moisture, dirt, and debris.
One of the major advantages of the touchpad is its compact footprint. The size of a touchpad will typically be rectangular, approximately 1.5-2 inches by 3-5 inches. This compact size creates additional difficulties, however.
A control gain is associated with the touchpad. A touchpad's surface is representative of a real space overlapping the monitor. By increasing or decreasing the control gain, the size of this real space is varied. By setting the gain very low, the size of the real space is adjusted to be smaller than the entire screen. A movement on the touchpad is translated into a relatively fine movement on the screen, allowing fine cursor control. When adjusted very fine, however, the touchpad may not cover the real space corresponding to the entire screen. A user may be forced to drag an object until reaching the edge of the touchpad and then release the object to reposition his/her finger on the touchpad. This can result in objects being dropped in undesirable locations and losing other highlighted work.
Adjusting the gain too high has similar shortcomings. If the gain is adjuste
Gateway Inc.
Hjerpe Richard
Lesperance Jean
Suiter Sean P.
Suiter & Associates
LandOfFree
Speed zone touchpad does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Speed zone touchpad, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Speed zone touchpad will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2905144