Speed regulator by pulse width modulation for direct current...

Electricity: motive power systems – Induction motor systems – Primary circuit control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S254100, C318S432000, C318S434000, C318S799000, C388S804000, C388S805000

Reexamination Certificate

active

06831441

ABSTRACT:

PURPOSE OF THE INVENTION
In this invention an electronic regulator has been developed to control the speed of a direct current electric motor, with which is possible to simplify the design regarding the existing velocity regulators.
Equally, it is the purpose of this invention, to reduce the noise produced by the switching, so that the operation of the motor is as silent as possible, and to obtain an acceptable level of electromagnetic interference.
BACKGROUND TO THE INVENTION
PWM (Pulse Width Modulation) regulators, that are more efficient than lineal regulators, are well known. In the latter the velocity of a direct current motor is controlled by varying the induced current by changing the value of a resistive element (for example a lineal transistor) in series with the motor, and they have the disadvantage of the large losses that take place in this resistive element.
The pulse width modulation regulators (PWM) allow a more effective regulation. These regulators base their operation on a switching device, which might be a power transistor, to which is applied a fixed frequency signal and which is made to always work in one of two states: conduction or non conduction. To vary the current or the output voltage, it modifies the width of the pulse that determines the conduction time of the switching unit. After the switching stage a filter should be placed to eliminate in the amount necessary the current and/or voltage fluctuations caused by the switching.
The use of the PWM regulators has not been introduced definitively in the automobile sector, since it is a solution that implies a high economic cost. The purpose of this invention is to present a product suitable for this and other markets, in which the cost is a key factor.
German patent DE-196.17.947 discloses a power supply circuit for motor minimising mains network reaction. The circuit comprises a rectifier, a controlled switch and a set-point potentiometer. The motor has a free-wheeling diode in parallel with its armature and other stator winding. A further stator winding fulfils the role of a smoothing choke in conjunction with a capacitor.
In this circuit arrangement, the independent use of several stator windings is required for that a modified motor is needed.
The European patent EP-655.835 reveals a method and device for controlling an electric apparatus by means of a pulse width modulation device, in which the electric apparatus is switched on and off at a low cyclic rate within the range of 20 Hz to 10 Khz and wherein each low-frecuency cycle signal (a) is followed by a number of high-frecuency signals (b) in a range of 10 Khz to 100 Khz which delays the current drop.
In this method, interfering low-frecuency noise is prevented due to the sinusoidal current drop af the end of the low-frecuency cycle signal.
DESCRIPTION OF THE INVENTION
The velocity regulator for direct current motors in which this invention consists, presents a simplified design with which the costs are decreased considerably, at the same time that the noises caused by the switching of the motor are reduced, making the switching as smooth as possible.
Thus, the invention consists in that the regulator does not require any inductor element to filter the output of the switching device, since the winding of the motor and its own mechanical inertia function as a filter, with which a significant economic saving is made on eliminating this inductive element.
The key to be able to eliminate the usual inductor in the PWM circuits and to substitute it by the same motor consists in using a switching frequency below audible limit, that is to say below 50 Hz, and to switch smoothly. But since direct current motors act as sound transducers, the switching frequency can be heard if it is in the audible range. In the case of a subsonic modulation frequency, what is heard are the transitions, those alterations that contain audible frequencies. To reduce this effect curving the form of the direct wave has been resorted to, eliminating the usual abrupt transitions in the PWM circuits.
The inductor being eliminated from the PWM circuit, allows this latter to be integrated completely in a semiconductor capsule, something impossible in any other way (the inductor cannot be integrated).
An additional consequence of using smooth switching is that, in many cases, you can do without, as well as the inductor, also the flyback diode usually associated with every PWM circuit. This entails a very important additional cost reduction and the possibility that the circuit may support an inversion of the supply voltage without being destroyed.


REFERENCES:
patent: 4465961 (1984-08-01), Landino
patent: 5270631 (1993-12-01), Takahashi
patent: 5309077 (1994-05-01), Choi
patent: 5625269 (1997-04-01), Ikeda
patent: 5811948 (1998-09-01), Sato et al.
patent: 195 48 270 (1997-06-01), None
patent: 196 17 947 (1997-07-01), None
patent: 0 655 835 (1995-05-01), None
patent: 763 883 (1997-03-01), None
patent: 823 775 (1998-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Speed regulator by pulse width modulation for direct current... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Speed regulator by pulse width modulation for direct current..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Speed regulator by pulse width modulation for direct current... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3323662

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.