Telecommunications – Transmitter and receiver at separate stations – Single message via plural carrier wave transmission
Reexamination Certificate
2008-01-23
2011-10-04
Pham, Tuan (Department: 2618)
Telecommunications
Transmitter and receiver at separate stations
Single message via plural carrier wave transmission
C455S039000, C455S062000, C455S454000, C370S203000, C370S208000, C370S210000, C375S353000, C375S354000, C375S355000
Reexamination Certificate
active
08032085
ABSTRACT:
A signal processing method includes sampling an analog signal, which has a spectral density defining one or more bands, to produce a digitized signal. A spectral transform of the digitized signal is expressed as a matrix multiplied by a vector, wherein the vector includes multiple elements that represent the spectral density of the analog signal as a function of frequency within respective spectral slices. Indices of a subset of the elements of the vector, in which the spectral density is concentrated, is determined. The analog signal is reconstructed from the digitized signal using the subset of the elements of the vector and a corresponding subset of columns of the matrix having the indices.
REFERENCES:
patent: 2004/0264634 (2004-12-01), Claus et al.
patent: 2005/0141603 (2005-06-01), Miller
patent: 2005/0179585 (2005-08-01), Walker et al.
patent: 2006/0009225 (2006-01-01), Herre et al.
patent: 2006/0013597 (2006-01-01), Crivelli et al.
patent: 2008/0129560 (2008-06-01), Baraniuk et al.
patent: 2010/095083 (2010-08-01), None
National Semiconductor Corporation, “A/D Converter—Definition of terms”, Jan. 2000.
Tropp, J.A., “Algorithms for simultaneous spare approximation. Part II: Convex relaxation”, Special Issue on Sparse Approximations in Signal and Image Processing, vol. 86, issue 3, pp. 589-602, Mar. 2006.
“Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed physical layer in the 5 GHz band,” IEEE Standard 802.11a, year 1999.
Zverev, A.I. “Handbook of Filter Synthesis”, p. 13, John Wily & Sons 1967.
Viterbi, A.J., “CDMA principles of spread spectrum communication,” Addison-Wesly Wireless Communications Series, 1995.
Kohlenberg, A., “Exact interpolation of band-limited functions”, Journal of Applied Physics, vol. 24, No. 12, pp. 1432-1435, Dec. 1953.
Dickson et al., “An 80-Gb/s 231—1 pseudorandom binary sequence generator in SiGe BiCMOS technology”, IEEE Journal on Solid-State Circuits, vol. 40, No. 12, pp. 2735-2745, Dec. 2005.
Razavi, B., “A 60-GHz CMOS receiver front-end”, IEEE Journal of Solid-State Circuits, vol. 41, No. 1, pp. 17-22, Jan. 2006.
Shannon, C.E., “Communication in the presence of noise”, Proceeding of IRE, vol. 86, No. 2, pp. 447-457, Feb. 1998 (reprinted from IRE proceedings vol. 37, pp. 10-21, 1949).
Hedge et al., “Random projections for manifold learning”, Advances in Neural Information Processing Systems 20, pp. 641-648, year 2008.
Herley et al., “Minimum rate sampling and reconstruction of signals with arbitrary frequency support”, IEEE Transactions on Information Theory, vol. 45, No. 5, pp. 1555-1564, Jul. 1999.
Kienmayer et al., “A low-power low-voltage NMOS bulk-mixer with 20 GHz bandwidth in 90 nm CMOS”, Proceedings of the 2004 International Symposium on Circuits and Systems, vol. 4, Vancouver, Canada, May 23-26, 2004.
Wang et al., “A background timing-skew calibration technique for time-interleaved analog-to-digital converters”, IEEE Transactions on Circuits & Systems—II: Express Briefs, vol. 53, No. 4, pp. 299-303, Apr. 2006.
Donoho et al., “Optimally sparse representation in general (nonorthogonal) dictionaries via I1 minimization”, Proceedings of the National Academy of Science of USA, vol. 100, No. 4, pp. 2197-2202, Mar. 4, 2003.
Donoho, D.L., “Compressed sensing”, IEEE Transactions on Information Theory, vol. 52, No. 4, pp. 1289-1306, Apr. 2006.
Candes et al., “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”, IEEE Transactions on Information Theory, vol. 52, No. 2, pp. 489-509, Feb. 2006.
Laskin et al., “A 60 mW per Lane, 4 × 23-Gb/s 27-1 PRBS Generator”, IEEE Journal on Solid-State Circuits, vol. 41, No. 10, pp. 2198-2208, Oct. 2006.
Gardner, F., “Properties of frequency difference detectors”, IEEE Transactions on Communications, vol. 33, No. 2, pp. 131-138, Feb. 1985.
Landau, H.J., “Necessary density conditions for sampling and interpolation of certain entire functions”, Acta Mathematica, vol. 177, No. 1, pp. 37-52, Feb. 1967.
Johansson et al., “Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters”, IEEE Transactions on Signal Processing, vol. 50, No. 11, pp. 2757-2767, Nov. 2002.
Nyquist, H., “Certain Topics in Telegraph Transmission Theory”, Proceedings of the IEEE, vol. 90, No. 2, pp. 280-305, Feb. 2002 (reprinted from Transactions of A.I.E.E, vol. 47, No. 2, pp. 617-644, Apr. 1928).
Friis, H. T., “Noise figures of radio receivers”, Proceedings of the IRE, vol. 32, No. 7, pp. 419-422, Jul. 1944.
Tropp, J. A., “Algorithms for simultaneous spare approximation. Part I: Greedy pursuit”, Special Issue on Sparse Approximations in Signal and Image Processing, vol. 86, pp. 572-588, Apr. 2006.
Chen et al., “Theoretical results on sparse representations of multiple-measurement vectors”, IEEE Transactions on Signal Processing, vol. 54, No. 12, pp. 4634-4643, Dec. 2006.
Crols et al., “Low-IF topologies for high-performance analog front ends of fully integrated receivers”, IEEE Transactions on Circuits & Systems—I:Analog and Digital Signal Processing, vol. 45, No. 3, pp. 269-282, Mar. 1998.
Elbornsson et al., “Blind equalization of time errors in a time-interleaved ADC system”, IEEE Transactions on Signal Processing, vol. 53, No. 4, pp. 1413-1424, Apr. 2005.
Laska et al., “Theory and implementation of an analog-to-information converter using random demodulation”, IEEE Proceedings of International Symposium on Circuits and Systems, pp. 1959-1962, New Orleans, USA, May 27-30, 2007.
Le et al., “Analog-to-digital converters”, IEEE Signal Processing Magazine, vol. 22, No. 6, pp. 69-77, Nov. 2005.
Cotter et al., “Sparse solutions to linear inverse problems with multiple measurement vectors”, IEEE Transactions on Signal Processing, vol. 53, No. 7, pp. 2477-2488, Jul. 2005.
Venkataramani et al., “Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals”, IEEE Transactions on Information Theory, vol. 46, No. 6, pp. 2173-2183, Sep. 2000.
Unser, M., “Sampling—50 years after Shannon”, Proceedings of the IEEE, vol. 88, No. 4, pp. 569-587, Apr. 2000.
Vetterli et al., “Sampling signals with finite rate of innovation”, IEEE Transactions on Signal Processing, vol. 50, No. 6, pp. 1417-1428, Jun. 2002.
Mitoja, J., “Cognitive radio for flexible mobile multimedia communications”, Mobile Networks and Applications, vol. 6, issue 5, pp. 435-441, Sep. 2001.
Alon et al., “Simple construction of almost k-wise independent random variables”, Proceedings of the 31st Annual Symposium on Foundations of Computer Science, vol. 2, pp. 554-553, St. Louis, USA, Oct. 22-24, 1990.
Carvalho et al., “Compact formulas to relate ACPR and NPR to two-tone IMR and IP3”, Microwave Journal, vol. 42, No. 12, Dec. 1999.
Boutin et al., “An arctangent type wideband PM/FM demodulator with improved performances”, Proceedings of the 33rd Midwest Symposium on Circuits and Systems, pp. 460-463, Calgary, Canada, Aug. 12-14, 1990.
Feng et al., “Spectrum-blind minimum-rate sampling and reconstruction of multiband signals”, Proceedings of IEEE International Conference on ASSP, vol. 2, pp. 1688-1691, May 1996.
Vaidyanathan et al., “Generalizations of the sampling theorem: Seven decades after Nyquist”, IEEE Transactions on Circuits & Systems—I: Fundamental Theory and Applications, vol. 48, No. 9, pp. 1094-1109, Sep. 2001.
Welch et al., “The use of fast Fourier transform for the estimation of power spectra: A m
Mishali Moshe
Yonina Eldar
D. Kliger I.P. Services Ltd.
Pham Tuan
Technion Research & Development Foundation Ltd.
LandOfFree
Spectrum-blind sampling and reconstruction of multi-band... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spectrum-blind sampling and reconstruction of multi-band..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spectrum-blind sampling and reconstruction of multi-band... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4300538