Spectrometer provided with pulsed ion source and...

Radiant energy – Ionic separation or analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S282000, C250S287000, C250S288000

Reexamination Certificate

active

06331702

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to mass spectrometers and ion sources therefor. More particularly, this invention is concerned with pulsed ion sources and the provision of a transmission device which gives a pulse ion source many of the characteristics of a continuous source, such that it extends and improves the application of Time of Flight Mass Spectrometry (TOFMS) and that it additionally can be used with a wide variety of other spectrometers, in addition to an orthogonal injection time-of-flight mass spectrometer.
BACKGROUND OF THE INVENTION
Ion sources for mass spectrometry may be either continuous, such as ESI (electrospray ionization) sources or SIMS (secondary ion mass spectrometry) sources, or pulsed, such as MALDI (matrix-assisted laser desorption/ionization sources). Continuous sources have normally been used to inject ions into most types of mass spectrometer, such as sector instruments, quadrupoles, ion traps and ion cyclotron resonance spectrometers. Recently it has also become possible to inject ions from continuous sources into time-of-flight (TOF) mass spectrometers through the use of “orthogonal injection”, whereby the continuous beam is injected orthogonally to the main TOF axis and is converted to the pulsed beam required in the TOF technique. This is most efficiently carried out with the addition of a collisional damping interface between the source and the spectrometer, and this is described in the following paper, having four authors in common with the present invention (Krutchinsky A. N., Chernushevich I. V., Spicer V. L., Ens W., Standing K. G.,
Journal of the American Society for Mass Spectrometry,
1998, 9, 569-579).
On the other hand, pulsed sources, MALDI sources for example, have usually been coupled directly to TOF mass spectrometers, to take advantage of the discrete or pulse nature of the source. TOF mass spectrometers have several advantages over conventional quadrupole or ion trap mass spectrometers. One advantage is that TOF mass spectrometers can analyze a wider mass-to-charge range than do quadrupole and ion trap mass spectrometers. Another advantage is that TOF mass spectrometers can record all ions simultaneously without scanning, with higher sensitivity than quadrupole and ion trap mass spectrometers. In a quadrupole or other scanning mass spectrometer, only one mass can be transmitted at a time, leading to a duty cycle which may typically be 0.1%, which is low (leading to low sensitivity). A TOF mass spectrometer therefore has a large inherent advantage in sensitivity.
However, TOF mass spectrometers encounter problems with many widely used sources which produce ions with a range of energies and directions. The problems are particularly acute when ions produced by the popular MALDI (matrix-assisted laser desorption/ionization) technique are used. In this method, photon pulses from a laser strike a target and desorb ions whose masses are measured in the mass spectrometer. The target material is composed of a low concentration of analyte molecules, which usually exhibit only moderate photon absorption per molecule, embedded in a solid or liquid matrix consisting of small, highly-absorbing species. The sudden influx of energy is absorbed by the matrix molecules, causing them to vaporize and to produce a small supersonic jet of matrix molecules and ions in which the analyte molecules are entrained. During this ejection process, some of the energy absorbed by the matrix is transferred to the analyte molecules. The analyte molecules are thereby ionized, but without excessive fragmentation, at least in the ideal case.
Because a pulsed laser is normally used, the ions also appear as pulses, facilitating their convenient measurement in a time-of-flight spectrometer. However, the ions acquire a considerable amount of energy in the supersonic jet, with velocities of the order of 700 m/s, and they also may lose energy through collisions with the matrix molecules during acceleration, particularly in high accelerating fields. These and similar effects lead to considerable peak broadening and consequent loss of resolution in a simple linear time-of-flight instrument, where the ions are extracted from the target nearly parallel to the spectrometer axis. A partial solution to the problem is provided by a reflecting spectrometer, which partially corrects for the velocity dispersion, but a more effective technique is the use of delayed extraction, either by itself or in combination with a reflector. In delayed extraction, the ions are allowed to drift for a short period before the accelerating voltage is applied. This technique partially decouples the ion production process from the measurement, making the measurement less sensitive to the detailed pattern of ion desorption and acceleration in any particular case. Even so, successful operation requires careful control of the laser fluence (i.e. the amount of power supplied per unit area) and usually some hunting on the target for a favorable spot. Moreover, the extraction conditions required for optimum performance have some mass dependence; this complicates the calibration procedure and means that the complete range of masses cannot be observed with optimum resolution at any given setting. Also, the technique has had limited success in improving the resolution for ions of masses greater than about 20,000 Da. Moreover, it is difficult to obtain high performance MS—MS data in conventional MALDI instruments because ion selection and fragmentation tend to broaden the fragment peak width. The present inventors have realized that these problems can be overcome by abandoning the attempt to maintain the original pulse width, producing instead a quasi-continuous beam with superior characteristics, and then pulsing the injection voltage of the TOF device at an independent repetition rate.
Although coupling to a TOF instrument is used as an example above, problems also arise in coupling MALDI and other pulsed sources to other types of mass spectrometer, such as quadrupole (or other multipole), ion trap, magnetic sector and FTICRMS (Fourier Transform Ion Cyclotron Resonance Mass Spectrometer). Further, it is also desirable to be able to couple MALDI or other pulsed sources to tandem mass spectrometers, e.g. a triple quadrupole or a quadrupole TOF hybrid instrument, which allows MS/MS of MALDI ions to be obtained. Standard MALDI instruments cannot be configured to carry out high performance MS/MS. The dispersion in energy and angle of ions produced by a MALDI source, or similar source, accentuates the difficulty of ion injection. Also, because the residence times of ions in most other types of mass spectrometer are considerably longer than in TOF instruments, the large space charge in the pulse can introduce additional problems. These instruments are all designed to operate with continuous sources, so conversion of the pulsed source to a quasi-continuous one solves most of the problems.
BRIEF SUMMARY OF THE PRESENT INVENTION
Accordingly, it is desirable to provide an apparatus and method enabling a pulse source, such as a MALDI source, to be coupled to a variety of spectrometer instruments, in a manner which more completely decouples the spectrometer from the source and provides a more continuous ion beam with smaller angular and velocity spreads.
More particularly, it is desirable to provide an improved TOF mass spectrometer with a pulsed ion source, in which the energy spread in the ion beam is reduced, in which the source is more completely decoupled from the spectrometer than in existing instruments, in which problems resulting from ion fragmentation are reduced, enabling new types of measurement, and in which the results obtained from the mass spectrometer and its ease of operation are consequently improved.
It is also desirable to provide a TOF mass spectrometer with both continuous and pulsed sources, for example both ESI and MALDI sources, so either source can be selected.
In accordance with the present invention, there is provided a mass spectrometer system comprising:
a pulsed ion source,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spectrometer provided with pulsed ion source and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spectrometer provided with pulsed ion source and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spectrometer provided with pulsed ion source and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.