Spectral watermarking for motion picture image data

Optics: motion pictures – Special effects

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C352S090000, C352S133000, C353S122000

Reexamination Certificate

active

06809792

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to a pattern display apparatus for motion pictures and more particularly relates to a method for marking a displayed motion picture image in order to discourage recording the image using a video camera.
BACKGROUND OF THE INVENTION
Movie piracy is a cause of substantial revenue loss to the motion picture industry. Illegally copied movies, filmed during projection with video cameras or camcorders and similar devices, are a significant contributing factor to revenue loss. Even the questionable quality of movies pirated in this fashion does not prevent them from broad distribution in the “black market”, especially in some overseas markets, and on the Internet. As video cameras improve in imaging quality and become smaller and more capable, the threat of illegal copying activity becomes more menacing to motion picture providers. While it may not be possible to completely eliminate theft by copying, it can be advantageous to provide display delivery techniques that frustrate anyone who attempts to copy a motion picture using a portable video camera device.
It is known to provide a distinct symbol or watermark to an original still image as a means of image or copy identification, such as in order to authenticate a copy. As examples, U.S. Pat. No. 5,875,249 (Mintzer et al.), U.S. Pat. No. 6,031,914 (Tewfik et al.), and U.S. Pat. No. 5,912,972 (Barton) disclose methods of applying a perceptually invisible watermark to image data as verification of authorship or as evidence that an image has not been altered. However, where such methods identify and validate image data, they provide no direct means of protection against copying an image, such as using a conventional scanner and color printer. In contrast, U.S. Pat. No. 5,530,759 (Braudaway et al.) discloses providing a visible, color correct watermark that is generated by altering brightness characteristics but not chromaticity of specific pixels in the image. But the approach used in U.S. Pat. No. 5,530,759 could be objectionable if used for a motion picture, since the continuing display of a watermark on film could annoy an audience and adversely affect the viewing experience.
The above examples for single images illustrate a key problem: an invisible watermark identifies but does not adversely affect the quality of an illegal copy, while a visible watermark can be distracting and annoying. With video and motion picture images, there can be yet other problems with conventional image watermarking. For example, U.S. Pat. No. 5,960,081 (Vynne et al.) discloses applying a hidden watermark to MPEG data using motion vector data. But this method identifies and authenticates the original compressed data stream and would not provide identification for a motion picture that was copied using a camcorder. Other patents, such as U.S. Pat. No. 5,809,139 (Girod et al.), U.S. Pat. No. 6,069,914 (Cox), and U.S. Pat. No. 6,037,984 (Isnardi et al.) disclose adding an imperceptible watermark directly to the discrete cosine transform (DCT) coefficients of a MPEG-compressed video signal. These methods, however, provide a watermark that is primarily detectable in the compressed image data itself. If such watermarked images are subsequently recompressed using a lossy compression method (such as by a camcorder, for example) or are modified by some other image processing operation, the watermark may no longer be detectable.
The watermarking schemes disclosed in the patents listed above add a watermark to the compressed bit stream of an image or image sequence. Alternatively, there are other watermarking schemes that add the watermark to the image data itself, rather than to the compressed data representation. An example of such a scheme is given in U.S. Pat. No. 6,044,156 (Honsinger et al.), which discloses a spread spectrum technique using a random phase carrier. However, regardless of the specific method that is used to embed a watermark, there is always a concern that a watermarking method be robust, that is, able to withstand various “attacks” that can remove or alter the watermark. Some attacks may be deliberately aimed at the underlying structure of a given watermarking scheme and require detailed knowledge of watermarking techniques applied. However, most attack methods are less sophisticated, performing common modifications to the image such as using lossy compression, introducing lowpass filtering, or cropping the image, for example. Such modifications can be made when a video camera is used to capture a displayed motion picture. These methods present a constant threat that a watermark may be removed during the recording process.
The watermarking schemes noted above are directed to copy identification, ownership, or authentication. However, even if a watermarking approach is robust, provides copy control management, and succeeds in identifying the source of a motion picture, an invisible watermark may not be a sufficient deterrent for illegal copying.
As an alternative to watermarking, some copy deterrent schemes used in arts other than video or movie display operate by modifying a signal or inserting a different signal to degrade the quality of any illegal copies. The modified or inserted signal does not affect playback of a legally obtained manufactured copy, but adversely impacts the quality of an illegally produced copy. As an example of this principle, U.S. Pat. No. 4,644,422 (Bedini) discloses adding a degrading signal to discourage copying of audio recordings. An audio signal having a frequency at and above the high threshold frequency range for human hearing is selectively inserted into a recording. The inserted signal is not detectable to the listener. However, any unauthorized attempt to copy the recording onto tape obtains a degraded copy, since the inserted audio signal interacts adversely with the bias oscillator frequency of a tape recording head.
As a variation of the general method where a signal is inserted that does not impact viewability but degrades copy quality, U.S. Pat. No. 6,018,374 (Wrobleski) discloses the use of a second projector in video and motion picture presentation. This second projector is used to project an infrared (IR) message onto the display screen, where the infrared message can contain, for example, a date/time stamp, theater identifying text, or other information. The infrared message is not visible to the human eye. However, because a video camera has broader spectral sensitivity that includes the IR range, the message will be clearly visible in any video camera copy made from the display screen. The same technique can be used to distort a recorded image with an “overlaid” infrared image. While the method disclosed in U.S. Pat. No. 6,018,374 can be effective for frustrating casual camcorder recording, the method has some drawbacks. A more sophisticated video camera operator could minimize the effect of a projected infrared watermark using a filter designed to block infrared light. Video cameras are normally provided with some amount of IR filtering to compensate for silicon sensitivity to IR. With a focused watermark image, such as a text message projected using infrared light, retouching techniques could be applied to alter or remove a watermark, especially if the infrared signal can be located within frame coordinates and is consistent, frame to frame. A further drawback of the method disclosed in U.S. Pat. No. 6,018,374 relates to the infrared light source itself. Since an infrared lamp can generate significant amounts of heat, it may not be practical to project a watermark or copy deterrent image over a large area of the display screen using only an IR source.
Conventional methods such as those described above could be adapted to provide some measure of copy deterrence and watermarking for conventional as well as digital motion pictures. However, none of the methods noted above is wholly satisfactory, for the reasons stated. None of the existing copy protection or watermarking methods takes advantage of key characteristics of the digital motion pict

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spectral watermarking for motion picture image data does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spectral watermarking for motion picture image data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spectral watermarking for motion picture image data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.