Surgery – Diagnostic testing – Liquid collection
Reexamination Certificate
1999-08-06
2001-01-09
Hindenburg, Max (Department: 3736)
Surgery
Diagnostic testing
Liquid collection
C604S317000, C600S577000
Reexamination Certificate
active
06171261
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention.
This invention relates to a medical collection device for collecting samples of biological fluids, such as urine, and transferring a portion of the collected fluid to a test tube for analysis.
2. Description of the Prior Art.
Biological fluids are collected periodically for laboratory analysis. The laboratory equipment that performs the analysis may only accept biological fluid stored in a test tube. However, a test tube is too small for the convenient collection of many biological fluids, such as urine. As a result, specimens often are collected in a fairly large container with a widely open top and a lid. The lid is removed to enable the biological fluid to be collected in the container. The lid then is replaced, and the container with the biological fluid is delivered to a medical technician. The technician then transfers a portion of the fluid to a test tube that can be sealed and transported to a laboratory for analysis. The transfer of the biological fluid from the collection container to the test tube is an unpleasant task that creates the risk of contaminating the specimen or contaminating the technician performing the transfer.
Some biological fluids, such as blood, are collected with assemblies that include a vacuum tube and a double ended needle cannula. One end of the needle cannula is placed in communication with the biological fluid, and the opposed end of the needle cannula is urged through a vacuum seal and into the vacuum tube. Low pressure within the vacuum tube generates a flow of the bodily fluid through the needle cannula and into the tube. Such vacuum tubes are very convenient and efficient for collecting blood samples. However, vacuum tubes have only a limited shelf life due to gradual migration of gas molecules through the walls of the tube. Additionally, sharply pointed double ended needle cannulas require careful shielding prior to, during and after use and further require special disposal precautions.
Some urine collection containers have test tubes removably connected thereto. A portion of the urine specimen collected in the container is automatically transferred to the test tube. The test tube then may be separated from the container, sealed and shipped to a laboratory for analysis. However, these prior art assemblies can lead to leakage during the initial collection of the specimen or after the separation of the test tube from the collection container.
SUMMARY OF THE INVENTION
The subject invention is directed to a specimen collection device which comprises a container having a substantially closed bottom wall, a widely open top, a bottom end and a side wall extending therebetween. Portions of the side wall adjacent the open top of the container may be formed with structure for releasably retaining a lid. For example, the side wall of the container may be formed with an array of threads that releasably engage threads on the lid.
The container is formed with an outlet aperture extending through the bottom wall or through portions of the side wall near the bottom wall. An access port is mounted in the outlet aperture. The access port comprises a pre-slit septum that may be formed from a resilient elastomeric material. The pre-slit septum is retained in a condition where the slit normally is sealingly closed to prevent an outflow of liquid from the container. However, the resilient elastomeric material of the septum enables a blunt cannula or tube to be urged through the slit for accessing liquid in the container. The septum will resiliently return to its initial sealed condition when the blunt cannula or tube is removed from the access port, to again prevent leakage of liquid from the container.
The septum may initially be mounted in a mounting collar, which in turn is mounted in the outlet aperture of the container. The mounting collar may be a substantially cylindrical structure having a barb or an array of barbs thereon. The barbs may deform or generate deformation of the container during insertion of the mounting collar into the outlet aperture. After sufficient insertion, however, the barbs may pass through the outlet aperture, thereby enabling both the mounting collar and the container to return to their undeformed condition in which the barbs lockingly retain the mounting collar and the pre-slit septum in the outlet aperture of the container.
The device may further comprise a test tube for receiving a portion of the liquid specimen from the container. The test tube typically will be significantly smaller than the container, and includes a closed bottom, an open top and a side wall extending therebetween.
The device further includes a cap for placing the test tube in communication with the container. The cap may be configured for releasable engagement with portions of the side wall of the test tube adjacent the open top. The cap may further include a transverse wall configured to extend substantially across the open top of the test tube. The transverse wall is formed with an inlet aperture that is eccentric to the transverse wall and a vent aperture. An inlet conduit extends rigidly upwardly from and eccentric to the transverse wall and is registered with the inlet aperture. The inlet conduit is dimensioned and configured to be urged through the pre-slit septum for providing communication between the container and the test tube. The inlet conduit may include a tapered end to facilitate movement through the pre-slit septum.
The cap may further include a vent conduit extending from the vent aperture into the test tube. The vent conduit functions to permit an outflow of air as the liquid flows into the test tube. The vent conduit further comprises a bottom wall having a narrow slit. A sufficient volume of liquid in the test tube will cover the bottom wall of the vent conduit, and will thereby prevent further escape of air from the test tube. This inability to vent air from the test tube will impede and eventually stop the flow of liquid through the inlet conduit and into the test tube. The bottom wall of the vent conduit may be adjusted a distance form the closed bottom of the test tube to selectively elect the amount of fluid to be transferred from the container to the test tube.
The cap may further include a cylindrical cover wall extending from transverse wall and surrounding the inlet conduit. A cover may be hinged to the cylindrical cover wall and may be movable into sealing engagement with the cover wall.
The specimen collection device is used by initially depositing a sample of biological fluid, such as urine, into the container. The pre-slit septum will prevent an outflow of the collected specimen from the outlet aperture of the container. The lid then may be removably mounted over the open top of the container, and the container may be delivered to a medical technician. The technician employs the above-described assembly of a test tube and cap assembly. In particular, the cover of the cap is rotated away from sealed engagement with the inlet conduit. The end of the inlet conduit then is urged through the pre-slit septum to access the contents of the container. Fluid in the container will flow through the inlet conduit and into the test tube. The volume of fluid in the test tube eventually will rise to the level of the bottom wall of vent conduit. Liquid in the test tube then will prevent further venting of air through the narrow slit from the test tube and will stop the inflow of fluid through the inlet conduit and into the test tube. The technician then merely separates the assembled test tube and cap from the collection container. As the inlet conduit is removed from the pre-slit septum, the septum will return to its initial configuration and will sealingly close the outlet aperture in the container. The cover of the cap may be rotated into sealing engagement with the cover wall of the cap. The sealed test tube then may be transported to a laboratory for analysis. Once the cover of the cap is sealed it cannot be re-opened. The access to the specimen in the test tube is only obtain
Golabek, Jr. Robert S.
Niermann Volker
Wilkinson Bradley Mark
Becton Dickinson and Company
Hindenburg Max
LandOfFree
Specimen collection device and method of delivering fluid... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Specimen collection device and method of delivering fluid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Specimen collection device and method of delivering fluid... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545354