Spatial-heterodyne interferometry for reflection and...

Optics: measuring and testing – By light interference – Having light beams of different frequencies

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S489000

Reexamination Certificate

active

06999178

ABSTRACT:
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.

REFERENCES:
patent: 4812042 (1989-03-01), Yokokura et al.
patent: 5299035 (1994-03-01), Leith et al.
patent: 5339152 (1994-08-01), Horn
patent: 5410397 (1995-04-01), Toeppen
patent: 5515183 (1996-05-01), Hashimoto
patent: 5671042 (1997-09-01), Sciammarella
patent: 5877873 (1999-03-01), Bashaw et al.
patent: 5995251 (1999-11-01), Hesselink et al.
patent: 6078392 (2000-06-01), Thomas et al.
patent: 6262818 (2001-07-01), Cuche et al.
patent: 6525821 (2003-02-01), Thomas et al.
patent: 6597446 (2003-07-01), Klooster et al.
patent: 6747771 (2004-06-01), Thomas et al.
patent: 6809845 (2004-10-01), Kim et al.
patent: 2003/0016364 (2003-01-01), Thomas et al.
patent: 2003/0227658 (2003-12-01), Thomas et al.
patent: 2004/0021871 (2004-02-01), Psaltis et al.
patent: 2004/0042015 (2004-03-01), Price
patent: 2004/0042056 (2004-03-01), Price et al.
patent: 2004/0042057 (2004-03-01), Thomas et al.
patent: 2004/0057089 (2004-03-01), Voelkl
patent: 2004/0130762 (2004-07-01), Thomas et al.
patent: 2004/0145745 (2004-07-01), Voelkl
patent: 2004/0212807 (2004-10-01), Hanson et al.
patent: 2004/0213462 (2004-10-01), Hanson et al.
patent: 2004/0213464 (2004-10-01), Hanson et al.
patent: 2005/0046857 (2005-03-01), Bingham et al.
patent: 2005/0046858 (2005-03-01), Hanson et al.
patent: 06282213 (1994-07-01), None
patent: WO 01/50201 (2001-07-01), None
patent: WO 03/048868 (2003-06-01), None
International Search Report and Written Opinion, PCT/US2004/027766, Feb. 2, 2005.
Thomas C. E., et al. “Direct to digital holography for high aspect ratio inspection of semiconductor wafers” AIP Conference Proceedings, American Institute of Physics, New York, NY, US, No. 683, Mar. 24, 2003, pp. 254-270.
Cuche E., et al. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numberical reconstruction of Fresnel off-axis holograms: Applied Optics, Optical Society of America USA, vol. 38, No. 34, Dec. 1, 1999, pp. 6994-7001.
Cuche E., et al. “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography” Applied Optics, Optical Society of America USA, vol. 39, No. 23, Aug. 10, 2000, pp. 4070-4075.
International Search Report and Written Opinion, PCT/US2004/027749, Feb. 2, 2005.
Cuche E., et al. “Digital holography for quantitative phase-contrast imaging” Optical Letter, Optical Society of America, Washington, USA, vol. 24, No. 5, Mar. 1, 1999, pp. 291-293.
Schnars U., “Direct phase determination in hologram interferometry with use of digitally recorded holograms” Journal of the Optical Society of America—A, Optical Cociety of America, Washington, US, vol. 11, No. 7, Jul. 1, 1994, pp. 2011-2015.
Edgar Volkl, “Introduction to Electron Holography”, pp. 133-138, published by Kluwer Academic/Plenum Publishers, New York, 1999.
Jacob et al., “High Resolution Photomask Transmission and Phase Measurement Tool”, Metrology, Inspection and Process Control for Microlithography XVI, Proceedings of SPIE vol. 4689, pp. 70-82, 2002.
Thomas et al., “Direct to Digital Holography for Semiconductor Wafer Defect Detection and Review”, Design, Process Integration, and Characterization for Microelectronics, Proceedings of SPIE vol. 4692, pp. 180-194, 2002.
“Phase Contrast Microscopy” Authors unknown, date unknown.
Invention of Holography: D. Gabor, Proc. Roy. Soc. London Ser. AA197, 459 (1949).
Invention of Sideband (Hetrodyne) Holography: E. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962) and J. Opt. Soc. Am. 53 1377 (1963).
Mathematical Treatise on Holography: J.B. Develis and G.O. Reynolds, Theory and Application of Holography, Addison-Wesley, Reading, MA, 1967.
Holographic Interferometry: L.O. Heflinger, R.F. Wuerker, and R.E. Brooks, J. Appl. Phys. 37, 642 (1966).
Discussion of Focused Holography (used for holographic interferometry): F.E. Jahoda, R.A. Jeffries and G.A. Sawyer, Appln. Opt. 6, 1407 (1967).
Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, M. Kujawinska, (edited by D.W. Robinson and G.T. Reid), IOP Publishing Ltd., Bristol, England, 1993).
Holographic Interferometry: Principles and Methods, K. Creath and T. Kreis (edited by K. Rastogi), Springer-Verlag, New York, New York, 1994.
Papers by E. Voelkl on Fourier transform analysis of electron holography: E. Voelkl, L.F. Allard, and B. Frost, J. Microscopy 180, pt. 1, Oct., 1995, pp. 39-50.
E. Voelkl, L.F. Allard, A. Datye, B. Frost, Ultramicroscopy 58, (1995), pp. 97-103.
E. Voelkl, L.F. Allard, ICEM-13 (13th International Conference on Electron Microscopy), Jul. 17-22, 1994, Paris, France, Proceedings, p. 287.
Volkl, E., et al. “Advanced Electron Holography: A New Algorithm for Image Processing and Standardized Quality Test for the FEG Electron Microscope”, Ultramicroscopy 58 (1995) 97-103.
Volkl, E., et al., “A Software Package for the Processing and Reconstruction of Electron Holograms”, Journal of Microscopy, vol. 180, pt. 1, Oct., 1995, pp. 39-50.
Leith, E.N. “Reconstructed Wavefronts and Communication Theory”, Journal of Optical Society of America, vol. 52 No. 10, Oct. 1962.
Gabor, D., et al., “Microscopy by Reconstructed Wave-Fronts”, Research Laboratory, Aug. 1948, pp. 454-487.
Leith, E.N., et al., “Wavefront Reconstruction with Continuous-Tone Objects”, Journal of the Optical Society of America, vol. 53, No. 12, Dec. 1963.
Leith, E.N., et al., “Wavefront Reconstruction with Diffused Illumination and Three Dimensional Objects”, Journal of the Optical Society of America, vol. 54, No. 11, Nov. 1964.
North, J.C., et al., “Holographic Interferometry”, Journal of Applied Physics, vol. 37, No. 2, Feb. 1966.
Kujawinska, M., “Digital Fringe Pattern Measurement Techniques”, Interferogram Analysis.
DeVelis, J.B., et al., “Theory and Applications of Holography”, (1967).
Jahoda, F.C., et al., “Fractional-Fringe Holographic Plasma Interferometry”, Applied Optics, Aug. 1967, vol. 6, No. 8, pp. 1407-1410.
Jahoda, F.C., et al., “Holographic Interferometry Cookbook”, Los Alamos Scientific Laboratory, Oct. 1972.
Rastogi, P.K., “Holographic Interferometry”, Optical Science Center, University of Arizona, vol. 68 (1994).
Volkl, E., et al., “The Extended Fourier Algorithm. Application in Discrete Optics and Electron Holography”, High Temperature Materials Laboratory, Jul. 1994.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spatial-heterodyne interferometry for reflection and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spatial-heterodyne interferometry for reflection and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spatial-heterodyne interferometry for reflection and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3686104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.