Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – Objective type
Reexamination Certificate
2001-04-25
2003-07-29
Lateef, Marvin M. (Department: 3737)
Optics: eye examining, vision testing and correcting
Eye examining or testing instrument
Objective type
C382S254000
Reexamination Certificate
active
06598973
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to systems and methods for performing objective measurements of a visual system, and, more particularly, to such a system and method for enhancing data from a Hartmann-Shack image.
2. Description of Related Art
Optical systems having a real image focus can receive collimated light and focus it at a point. Such optical systems can be found in nature, e.g., human and animal eyes, or can be manmade, e.g., laboratory systems, guidance systems, and the like. In either case, aberrations in the optical system can affect the system's performance. By way of example, the human eye will be used to explain this problem.
A perfect or ideal eye diffusely reflects an impinging light beam from its retina through the optics of the eye, which includes a lens and a cornea. For such an ideal eye in a relaxed state, i.e., not accommodating to provide near-field focus, reflected light exits the eye as a sequence of plane waves. However, an eye typically has aberrations that cause deformation or distortion of reflected light waves exiting the eye. An aberrated eye diffusely reflects an impinging light beam from its retina through its lens and cornea as a sequence of distorted wavefronts.
There are a number of technologies that attempt to provide the patient with improved visual acuity. Examples of such technologies include remodeling of the cornea using refractive laser surgery or intra-corneal implants, adding synthetic lenses to the optical system using intra-ocular lens implants, and precision-ground spectacles. In each case, the amount of corrective treatment is typically determined by placing spherical and/or cylindrical lenses of known refractive power at the spectacle plane (approximately 1.0-1.5 cm anterior to the cornea) and literally asking the patient which lens or lens combination provides the clearest vision. This is an imprecise measurement of true distortions in the reflected wavefront because (1) a single spherocylindrical compensation is applied across the entire wavefront; (2) vision is tested at discrete intervals (i.e., diopter units) of refractive correction; and (3) subjective determination by the patient is made in order to determine the optical correction. Thus conventional methodology for determining refractive errors in the eye is substantially less accurate than the techniques now available for correcting ocular aberrations.
One method of measuring ocular refractive errors is disclosed in U.S. Pat. No. 5,258,791 to Penney et al. for “Spatially Resolved Objective Autorefractometer,” which teaches the use of an autorefractometer to measure the refraction of the eye at numerous discrete locations across the corneal surface. Penney '791 further teaches the use of autorefractometer measurements in determining an appropriate corneal surface reshaping to provide emmetropia, a condition of a normal eye when parallel beams or rays of light are focused exactly on the retina and vision is perfect.
By way of example, one method and system known in the art are disclosed by Junzhong Liang et al. in “Objective Measurement Of Wave Aberrations of the Human Eye with the Use of a Hartmann-Shack Wave-Front Sensor” [
J. Opt. Soc. Am.
11(7), July 1994, pp 1949-57]. Liang et al. teach the use of a Hartmann-Shack wavefront sensor to measure ocular aberrations by measuring the wavefront emerging from the eye by the retinal reflection of a focused laser light spot on the retina's fovea. The actual wavefront is reconstructed using wavefront estimation with Zernike polynomials. A parallel beam of laser light passes through beam splitters and a lens pair, which brings the beam to a focus point on the retina by the optics of the eye. Possible myopia or hyperopia of the tested eye is corrected by movement of a lens within the lens pair. The focused light on the fovea is then assumed to be diffusely reflected and acts as a point source located on the retina. The reflected light passes through the eye and forms a distorted wavefront in front of the eye that results from the ocular aberrations. The aberrated wavefront is then directed to the wavefront sensor.
The Hartmann-Shack wavefront sensor disclosed by Liang et al. includes two identical layers of cylindrical lenses with the layers arranged so that lenses in each layer are perpendicular to one another, as further disclosed in U.S. Pat. No. 5,062,702 to Bille. In this way, the two layers operate as a two-dimensional array of spherical lenslets that divide the incoming light wave into subapertures. The light through each subaperture is brought to focus in the focal plane of the lens array where a charge-coupled-device (CCD) image module resides.
The system of Liang et al. is calibrated by impinging an ideal plane wave of light on the lenslet array so that a reference or calibrating pattern of focus spots is imaged on the CCD. Since the ideal wavefront is planar, each spot related to the ideal wavefront is located on the optical axis of the corresponding lenslet. When a distorted wavefront passes through the lenslet array, the image spots on the CCD are shifted with respect to a reference pattern generated by the ideal wavefront. Each shift is proportional to a local slope, i.e., partial derivatives of the distorted wavefront, which partial derivatives are used to reconstruct the distorted wavefront, by means of modal wavefront estimation using Zernike polynomials.
However, the system disclosed by Liang et al. is effective only for eyes having fairly good vision. Eyes that exhibit considerable myopia (near-sightedness) cause the focus spots to overlap on the CCD, thereby making local slope determination practically impossible for eyes having this condition. Similarly, eyes that exhibit considerable hyperopia (farsightedness) deflect the focus spots such that they do not impinge on the CCD, thereby again making local slope determination practically impossible for eyes having this condition.
Various embodiments of a method and system for objectively measuring aberrations of optical systems by wavefront analysis have been disclosed in commonly owned application Ser. No. 09/566,668, “Apparatus and Method for Objective Measurement and Correction of Optical Systems Using Wavefront Analysis,” filed May 8, 2000, which is hereby incorporated by reference herein. In this invention, an energy source generates a beam of radiation. Optics, disposed in the path of the beam, direct the beam through a focusing optical system (e.g., the eye) that has a rear portion (e.g., the retina) that provides a diffuse reflector. The beam is diffusely reflected back from the rear portion as a wavefront of radiation that passes through the focusing optical system to impinge on the optics. The optics project the wavefront to a wavefront analyzer in direct correspondence with the wavefront as it emerges from the focusing optical system. A wavefront analyzer is disposed in the path of the wavefront projected from the optics and calculates distortions of the wavefront as an estimate of ocular aberrations of the focusing optical system. The wavefront analyzer includes a wavefront sensor coupled to a processor that analyzes the sensor data to reconstruct the wavefront to include the distortions thereof.
A perfectly collimated light beam (i.e., a bundle of parallel light rays, here a small-diameter, eye-safe laser beam) incident on a perfect, ideal emmetropic eye, focuses to a diffraction-limited small spot on the retina. This perfect focusing is true for all light rays passing through the entrance pupil, regardless of position. From the wavefront perspective, the collimated light represents a series of perfect plane waves striking the eye. The light emanates from an illuminated spot on the retina as wavefronts exiting as a series of perfect plane waves, which are directed onto a wavefront analyzer for measuring distortions from ideality.
In one embodiment, the radiation is optical radiation and the wavefront sensor is implemented using a plate and a planar array of light-sensitive
Alcon Inc.
Allen Dyer Doppelt Milbrath & Gilchrist, P.A.
Lateef Marvin M.
Sanders John R.
LandOfFree
Spatial filter for enhancing Hartmann-Shack images and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spatial filter for enhancing Hartmann-Shack images and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spatial filter for enhancing Hartmann-Shack images and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3035953