Sparger configuration for fluidized bed hydrocarbon partial...

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Organic polymerization

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S139000

Reexamination Certificate

active

06743400

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a sparger system provided for appropriately feeding reactant streams to fluidized bed reactors of hydrocarbon partial oxidation processes that are retrofitted to selectively recover and recycle unreacted hydrocarbons. This novel sparger system minimizes the capital cost required for retrofitting the existing sparging equipment, while at the same time allows the desired fluidization and catalyst oxidation characteristics to be achieved without the formation of flammable mixtures anywhere inside the sparging system.
2. Description of Art
Partial oxidation products, such as, maleic anhydride and acrylonitrile, are typically produced by the oxidation of hydrocarbons, such as, butane, butylene, propylene, or propane, using atmospheric air in fluidized bed reactors. These processes typically operate at high hydrocarbon conversions (of the order to 75 to 99%) in order to maximize the once-through product yield. The unreacted hydrocarbons contained in the reactor effluent are incinerated after the product is recovered in a product recovery unit.
Recently, recycle-based processes with higher productivity and selectivity have been proposed, wherein the reactor is operated at significantly lower reactant conversion to enhance the selectivity to the desired product and the unreacted hydrocarbons are recovered in a selective recovery unit and recycled back to the reactor. In a typical recycle process, the unreacted hydrocarbons are selectively recovered in a pressure swing adsorption (PSA) unit. During the adsorption step of the separation process, the hydrocarbons are adsorbed on a selective adsorbent, while the undesired components of the effluent stream are rejected into the waste stream from the PSA unit. During the regeneration step of the PSA unit, the hydrocarbons are desorbed and recovered in the recycle stream by lowering the pressure and simultaneously purging with a controlled amount of regeneration gas, such as, air. The desorption pressure and regeneration gas flow rate are adjusted to prevent the formation of flammable mixtures in the recycle stream. Additionally, these operating parameters can be adjusted to achieve the desired linear velocities in the reactor sparging equipment used to inject the feed streams to the reactor.
The recycle-based processes can be applied as modifications to existing non-recycle processes, as well as to new grassroots plants. Higher reactor inlet concentrations of hydrocarbon and oxygen are employed to enhance the reactor productivity. The increase in the reactant concentrations is achieved by using oxygen-enriched air or by substituting a portion of the air with oxygen. For a retrofit application, the recycle of recovered hydrocarbons and the use of enriched air or oxygen requires modification to the existing reactor sparging equipment. Additionally, the presence of enriched air or oxygen requires costly upgrades to the materials of construction, and hence in the overall capital cost. In addition to the above, some catalysts may be more sensitive to high oxygen concentrations.
Referring to the figures, and
FIG. 1
in particular, a typical fluidized bed reactor for a non-recycle process is represented generally by numeral
2
. Typically, the non-recycle reactor has two or more reactant streams and two spargers. The reactant air
12
is typically sparged from the bottom sparger
6
and the vaporized hydrocarbon feed
10
is introduced through a second sparger
8
located at a certain distance above the bottom sparger
6
. The introduction of the reactant streams in this manner allows several desirable characteristics to be achieved. Maintenance of an “oxidation zone” at the bottom of the reactor
4
is achieved, wherein reduced catalyst circulating from the upper (reducing) sections of the reactor
14
is re-oxidized and returned to its oxidized state. By introducing air
12
through the bottom sparger
6
, the circulating catalyst first comes in contact with an oxygen-rich stream. The catalyst oxidized in this manner then travels upward and subsequently comes in contact with the hydrocarbon
10
fed through the second sparger
8
. By staging the contact with the oxidizing and reducing atmospheres, increased catalyst life and higher selectivities to the desired partial oxidation product can be achieved.
Maintenance of a linear velocity high enough to effect sufficient fluidization of the catalyst particles at the bottom of the reactor
4
is also achieved. The bulk of the total reactant feed to the partial oxidation fluidized bed reactor
4
is comprised of the air feed
12
. Thus, introducing the air through the bottom sparger
6
accomplishes the task of maintaining a suitably high fluidizing velocity at the bottom of the reactor
4
.
Referring to the figures, and in particular
FIG. 2
, a typical recycle-based retrofitted process is represented generally by reference numeral
20
. With a recycle-based reactor, there are typically two additional reactant streams and thus at least one additional sparger
22
to introduce these streams to the reactor
4
. Therefore, the existing sparging equipment must be modified to feed three to four separate streams, which include fresh feed hydrocarbon
10
, fresh feed air
12
, fresh feed oxygen
26
, and recycled hydrocarbon
24
, as opposed to the two streams of the once-through, non-recycle process represented in
FIG. 1
(fresh feed hydrocarbon
10
and fresh feed air
12
). A typical recycle-based retrofitted process employs three separate spargers; one sparger
8
for fresh feed hydrocarbon
10
, a second sparger
22
for recycled hydrocarbon
24
and a third sparger
6
for the combined air and oxygen stream
28
. The combined air and oxygen stream
28
is introduced through a sparger
6
at the bottom of the reactor
4
, while the fresh feed hydrocarbon and the recycled hydrocarbon streams are separately introduced through spargers
8
,
22
located above bottom sparger
6
. Introducing the streams in this manner avoids the formation of flammable mixtures and maintains the oxidation and fluidization characteristics in reactor
4
.
However, there are several disadvantages associated with the existing recycle-based retrofitted processes. First, at least one additional sparger is required compared to the once-through, non-recycle process. Secondly, because of the introduction of pure oxygen, the bottom sparger may have to be constructed from a material that is more expensive than the carbon steel that is typically used in commercial plants. Lastly, the introduction of pure oxygen directly into the reactor can potentially have a negative impact on the life of the catalyst. These disadvantages ultimately result in higher capital costs to retrofit the reactor, as additional spargers are necessary, expensive materials of construction are required to handle the introduction of oxygen, and increased catalyst usage and decreased catalyst life.
SUMMARY OF THE INVENTION
The present invention is directed to a sparger system provided for appropriately feeding reactant streams to fluidized bed reactors of hydrocarbon partial oxidation processes that are retrofitted to selectively recover and recycle unreacted hydrocarbons. As a result of the sparger system, the reactor productivity and selectivity is enhanced while employing only two spargers. Also, the capital cost required for retrofitting existing sparging equipment is minimized, while at the same time, the desired fluidization and catalyst oxidation characteristics are achieved without the formation of flammable mixtures within the sparging systems.
The sparger system for use in the recycle-based reactor has a first sparger located in the bottom portion of the reactor for feeding a mixture of oxygen and air to the reactor. A second sparger, located above the first sparger, feeds a mixture of oxygen, recycled hydrocarbon, and fresh feed hydrocarbon to the reactor. The distribution of oxygen through these two spargers is controlled so as to allow the use of a low-cost material for t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sparger configuration for fluidized bed hydrocarbon partial... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sparger configuration for fluidized bed hydrocarbon partial..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sparger configuration for fluidized bed hydrocarbon partial... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3309640

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.