Aeronautics and astronautics – Spacecraft – Attitude control
Reexamination Certificate
2000-05-03
2002-01-29
Barefoot, Galen L. (Department: 3644)
Aeronautics and astronautics
Spacecraft
Attitude control
C244S170000
Reexamination Certificate
active
06341750
ABSTRACT:
BACKGROUND
The present invention relates generally to dual-spin spacecraft, and more particularly, to methods for estimating the motion of a spacecraft comprising a gimballed momentum wheel and stabilizing the motion of the spacecraft.
Heretofore, on certain dual spin satellites manufactured by the assignee of the present invention, a velocity wheel momentum storage device was used in conjunction with a roll/yaw controller. The limitations of the currently used velocity wheel momentum storage device and roll/yaw controller are generally well known and have been documented by the assignee of the present invention. These limitations include performance and operation limitations such as no roll momentum storage/torque capability, necessity of feedforward processing to achieve acceptable performance, and large transients with complimentary long settling times as compared to the performance of the pitch controller.
The present invention involves stabilization of a dual-spin spacecraft that uses a gimballed momentum wheel. The concept of the present invention is to disengage the gimbal from the drive train in anticipation of a short disturbance, and measuring the gimbal slip resulting from the disturbance. A search was performed on the present invention and this teaching was not found in any of the patents uncovered in the search.
Regarding the patent search, U.S. Pat. No. 3,493,194 Kurzhals relates to double gimballed momentum wheels for stabilizing a spacecraft, wherein the gimbal positions are sensed and appropriate signals are generated. This reference does not disclose or suggest gimbal disengagement provided by the present invention.
The following patents generally relate to spacecraft stabilization using gimbal-mounted momentum wheels: U.S. Pat. No 3,813,067 issued to Mork, U.S. Pat. No. 4,052,654 issued to Kramer, U.S. Pat. No. 4,230,294 issued to Pistiner, U.S. Pat. No. 4,275,861 issued to Hubert, U.S. Pat. No. 4,911,385 issued to Agrawal, and U.S. Pat. No. 5,012,992 issued to Salvatore.
The following patents provide general background for the present invention: U.S. Pat. No. 3,003,356 issued to Nordsieck, U.S. Pat. No. 3,104,454 issued to Draper, U.S. Pat. No. 3,281,094 issued to Jasperson, U.S. Pat. No. 3,368,777 issued to Boutin, U.S. Pat. No. 3,164,340 issued to Slater, U.S. Pat. No. 3,165,927 issued to Heath, U.S. Pat. No. 3,182,244 issued to Fitzrow, U.S. Pat. No. 3,188,019 issued to Boutin, U.S. Pat. No. 4,136,844 issued to Maudal, U.S. Pat. No. 4,143,312 issued to Duckworth. U.S. Pat. No. 4,418,306 issued to Samsel, and U.S. Pat. No. 4,723,735 issued to Eisenhaure
Accordingly, it would be an advance in the art to have a method of estimating the motion of a dual-spin spacecraft and for stabilizing a dual-spin spacecraft in the presence of short disturbances. It would also be an advance in the art to have a method overcomes the limitation of the velocity wheel momentum storage device and roll/yaw controller discussed above, and other conventional methods disclosed in the above-cited patents. It is therefore an objective of the present invention to provide for methods for estimating the motion of a spacecraft comprising a gimballed momentum and stabilizing the motion of the spacecraft.
SUMMARY OF THE INVENTION
To accomplish the above and other objectives, the present invention comprises a method for estimating motion of a dual-spin spacecraft employing a gimballed momentum wheel. The method temporarily reduces torque on the gimbal in anticipation of a short disturbance. This may be accomplished by disengaging the gimbal drive train, disengaging a holding mechanism disposed between motor stator and rotor, or disabling command and back-emf torques if the drive is a DC motor or a stepper motor. Then, the gimbal slip resulting from the disturbance is measured. An example of an anticipated short disturbance is a thruster firing pulse which is initiated by the onboard computer or ground command.
The present invention may be used to stabilize a dual-spin spacecraft that uses a gimballed momentum wheel. The gimbal slips during the short disturbance event, leaving the momentum wheel inertially undisturbed. The gimbal angle and gimbal rate in each of the two gimbal axes are measured during and after the short disturbance to provide an indication of the inertial spacecraft motion along gimbal axes. Then, the magnitude and direction of the disturbance are determined by comparing motion of the spacecraft before and after the disturbance. Then, torques are applied to the gimbal to quickly counteract the spacecraft motion resulting from the short disturbance.
The final damping of the spacecraft residual inertial motion after the quick counteraction can use an earth sensor, a star sensor, and/or gyroscopes with one of the conventional methods. In this part of the spacecraft motion control, angle sensors that are part of gimballed momentum wheels are used only to damp relative gimbal motion. The control torques commanded by the quick counteraction and the final damping can be superimposed together.
The cost to implement the present invention is lower and its reliability is higher than the above-described conventional approach because separate gyroscopes are not needed. In fact the gimballed wheel and the gimbal angle sensors act like a two-axis gyroscope during gimbal slip. Noise and range are better than earth or star sensors because the present invention does not rely on external optical references. Yaw motion can also be sensed using the present invention, which is not available when using an earth sensor. Data processing is much simpler using the present invention than for a star sensor.
REFERENCES:
patent: 3493194 (1970-02-01), Kurzhals
patent: 4021716 (1977-05-01), Rue
patent: 5269483 (1993-12-01), Flament
patent: 5396326 (1995-03-01), Knobbe et al.
Chu Peter Y.
Higham John S.
Barefoot Galen L.
Float Kenneth W.
Space Systems Loral, Inc.
LandOfFree
Spacecraft motion estimation using a gimballed momentum wheel does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spacecraft motion estimation using a gimballed momentum wheel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spacecraft motion estimation using a gimballed momentum wheel will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2839815