Spacecraft architecture for disturbance-free payload

Aeronautics and astronautics – Spacecraft – Spacecraft formation – orbit – or interplanetary path

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06454215

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to spacecraft architecture, and more specifically, to a spacecraft control architecture that provides a payload environment that is free from spacecraft-borne vibrations while still being able to control the motion of the payload in space.
DESCRIPTION OF THE RELATED ART
In many spacecraft-borne missions, it is imperative to attenuate mechanical disturbances and thus isolate a payload from vibrations generated on the spacecraft while retaining the capability of precisely controlling the motion of the payload. The problem caused by vibrations is common to scientific, commercial and military missions. Examples of scientific missions that are particularly affected by spacecraft vibrations are space-based telescopes, such as the Hubble Space Telescope and the proposed Next Generation Space Telescope, and space-based interferometers, such as NASA's Space Interferometery Mission. In the future, the use of laser-based communications, requiring precision pointing between satellites, will likely increase the significance of the problem for commercial payloads. Finally, motion stability and precision pointing and tracking are key technologies for military apparatus such as earth observatories and space-based defense and missile systems, such as the proposed space-based laser systems.
As reported in NASA Technical Memorandum 106496, titled
Final Report—Vibration Isolation Technology
(VIT) A TD Project by J. Lubomski et al. (March 1994), a wide variety of vibration isolation technologies have been considered. Passive isolation tends to be more cost effective, but has limited effectiveness specially at low frequencies. In general, active systems require sensing of motion or position, and a feedback and/or feedforward control loop to counteract mechanical excitation and minimize motion of an isolated body. Such systems typically introduce the complexity of a high-gain control system and isolation performance is limited by sensor characteristics.
Z. Geng et al. describes a vibration isolation system for space-borne structures in the
Journal of Intelligent Material Systems and Structures
, Vol. 6 (November 1995). The system includes an apparatus for providing real-time, six degree-of-freedom active vibration isolation. The apparatus requires multiple accelerometers and at least six force sensor inputs, six analog outputs, a sixteen channel digital I/O, and extensive computation power to accommodate complex control algorithms. The active system of Z. Geng et al. includes two layers of six vibration control mechanisms. An upper layer is the six degrees-of-freedom active vibration isolator with a mobile plate and base plate connected by six active elements. Each active element consists of a Terfenol-D actuator, a force sensor, a pair of accelerometers, and a pair of flexible joints. Six accelerometers are mounted on the mobile plate to measure the residual vibration and another six are placed on the base plate to monitor base plate excitation. Both acceleration and force measurements are fed to signal conditioners and then delivered to a control system, which generates control signals to power amplifiers that drive the Terfenol-D actuators. This is a complex system with performance limited both by the mechanical connection between the two bodies and by the characteristics of the sensors used to measure residual vibrations.
U.S. Pat. No. 4,848,525 to Jacot et al. discloses a dual mode vibration isolator for actively isolating vibrations between a forward body and an aft body. The isolator includes an intermediate mechanical stage referred to as a “mounting member”. The mounting member is pivotally connected via three pairs of linear actuators to the aft body. The mounting member exerts forces on the forward body via the use of three pairs of magnetic actuators. The linear actuators extend and contract to reposition the mounting member on the aft body, which in turn repositions the forward body relative to the aft body. Each magnetic actuator has an accompanying flux sensor and gap sensor, and each linear actuator is paired with a length sensor. Except for the additional mechanical stage, used to extend the range of motion between the forward and aft bodies at the expense of significant additional complexity, this is a typical magnetic isolation system with limited performance at low frequencies.
Edberg et. al. (AAS-96-071) describe the STABLE micro-gravity isolation system which exemplifies the state-of-the-art in magnetic isolation systems. The isolated payload is levitated by three dual-axis wide gap electromagnetic actuators. Signals from accelerometers located on the payload are used by a high bandwidth feedback controller to command counteracting electromagnetic actuator forces. Signals from three, two-axis optical sensors measure the position of the payload with respect to the mounting base and are used in a low bandwidth position loop to command the electromagnetic actuators. to keep the payload centered with respect to the base. As indicated by Edberg et. al., performance is limited by sensor characteristics, such as accelerometer noise floor. In addition, the control loop architecture limits isolation performance at low frequencies, near the bandwidth of the position control loop.
The problems with these and other existing vibration isolation systems are performance limitations at low frequencies, which is inherent to the architecture of these systems and specifically their control system architecture, and limitations associated with load, position, velocity and acceleration sensing, which, on existing systems, directly affect isolation performance.
What is needed is a system that exhibits superior vibration isolation performance down to very low frequencies, and isolation performance that is not limited by sensor characteristics. What is also needed is a system that allows control of the motion of the payload without limitation on its range of motion while using a small number of sensors and actuators to avoid the low reliability and high costs of a complex system.
SUMMARY OF THE INVENTION:
An object of the present invention is to provide a spacecraft architecture and in particular a spacecraft control architecture that simultaneously addresses the problems of payload pointing and motion control and vibration isolation, while providing superior vibration isolation down to zero frequency.
Another object of this invention is to provide a control architecture that allows the isolation of a payload from spacecraft-borne vibrations down to zero frequency, and a system in which the isolation performance is not limited by sensor characteristics.
Another object of this invention is to provide control of the attitude of a payload to any desired orientation without limitation on its range of motion, while isolating the payload from spacecraft-borne vibrations.
Still another object of the present invention is to provide precision pointing and motion control and vibration isolation for applications requiring high levels of motion control and stability, such as imaging payloads, laser-based communications and tracking systems.
The present invention achieves these and other objects by providing a system that includes a payload module and a support module that are preferably mechanically de-coupled. The motion of the payload module is controlled by reacting on the support module using non-contact actuators disposed between the two modules. The motion of the support module is controlled to follow the payload module using external actuators that react against the surroundings. In this way, no forces are applied between the payload and support modules due to relative motion control and vibration isolation is achieved down to zero frequency. Moreover, vibration isolation is not limited by sensor characteristics. In fact, if the sensors used to measure the motion of the payload module with respect to its surroundings stopped functioning, the payload module would be a drift, but the support module would continue to follow the payload mod

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spacecraft architecture for disturbance-free payload does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spacecraft architecture for disturbance-free payload, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spacecraft architecture for disturbance-free payload will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909725

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.