Space-time coded transmissions within a wireless...

Pulse or digital communications – Systems using alternating or pulsating current – Plural channels for transmission of a single pulse train

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S260000, C375S299000, C455S103000

Reexamination Certificate

active

10158390

ABSTRACT:
Techniques are described for space-time block coding for single-carrier block transmissions over frequency selective multipath fading channels. Techniques are described that achieve a maximum diversity of order NtNr(L+1) in rich scattering environments, where Nt(Nr) is the number of transmit (receive) antennas, and L is the order of the finite impulse response (FIR) channels. The techniques may include parsing a stream of information-bearing symbols to form blocks of K symbols, precoding the symbols to form blocks having J symbols, and collecting consecutive NSblocks. The techniques may further include applying a permutation matrix to the NSblocks, generating a space-time block coded matrix having Ntrows that are communicated through a wireless communication medium. The receiver complexity is comparable to single antenna transmissions, and the exact Viterbi's algorithm can be applied for maximum-likelihood (ML) optimal decoding.

REFERENCES:
patent: 6088408 (2000-07-01), Calderbank et al.
patent: 6442214 (2002-08-01), Boleskei et al.
patent: 6452981 (2002-09-01), Raleigh et al.
patent: 6614861 (2003-09-01), Terry et al.
patent: 2002/0122502 (2002-09-01), El-Gamal et al.
patent: 2002/0136327 (2002-09-01), El-Gamal et al.
M. Guillaud et al., “Multi-Stream Coding for MIMO OFDM Systems With Space-Time-Frequency Spreading,” Wireless Personal Multimedia Communications, the 5thInternational Symposium, vol. 1, pp. 120-124, Oct. 27-30, 2002.
Y. Gong et al., “Space-Frequency-Time Coded OFDM for Broadband Wireless Communications,” Global Telecommunications Conference, GLOBECOM '01, IEEE, Vo. 1, pp. 519-523, Nov. 25-29, 2001.
Zhengdao Wang et al., “Linearly Precoded or Coded OFDM Against Wireless Channel Fades?,” Third IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, pp. 267-270, Mar. 20-23, 2001.
Srihari Adireddy et al., “Optimal Embedding of Known Symbols for OFDM,” in Procedures International Conference, ASSP, vol. 4, Salt Lake City, UT, May 2001.
Yan Xin et al., “Space-Time Diversity Systems Based on Linear Constellation Precoding,” IEEE Transactions On Wireless Communications, vol. 2, No. 2, pp. 294-309, Mar. 2003.
Yan Xin et al., “Space-Time Diversity Systems Based on Unitary Constellation-Rotating Precoders,” in Procedures International Conference, Speech, Signal Process., Salt Lake City, UT, pp. 2429-2432, May 7-11, 2001.
Alexandra Duel-Hallen et al., “Long-Range Predication of Fading Channels,” IEEE Signal Processing Magazine, pp. 62-75, May 2000.
Amos Lapidoth et al., “Fading Channels: How Perfect Need “Perfect Side Information” be?,” in Procedures IEEE Information Theory Communications Workshop, pp. 36-38, Jun. 1999.
Akbar M. Sayeed et al., “Joint Multipath-Doppler Diversity in Mobile Wireless Communications,” IEEE Transactions On Communications, vol. 47, No. 1, pp. 123-132, Jan. 1999.
Anna Scaglione et al., “Filterbank Transceivers Optimizing Information Rate in block Transmissions Over Dispersive Channels,” IEEE Transactions on Information Theory, vol. 45, No. 3, pp. 1019-1032, Apr. 1999.
Anna Scaglione et al., “Redundant Filterbank Precoders and Equalizers Part I: Unification and Optimal Designs,” IEEE Transactins on Signal Processing, vol. 47, No. 7, pp. 1988-2022, Jul. 1999.
Babak Hassibi et al., “How Much Training Is Needed in Multiple-Antenna Wireless Links?” IEEE Transactions On Information Theory, vol. 49, No. 4, pp. 951-963, Apr. 2003.
Cristian Budianu et al., “Channel Estimation for Space-Time Orthogonal Block Codes,” IEEE Transactions on Signal Processing, vol. 50, No. 10, pp. 2515-2528, Oct. 2002.
C. Fragouli et al., “Finite-Alphabet Constant-Amplitude Training Sequence for Multiple-Antenna Broadband Transmissions,” Procedures of IEEE International Conference on Communications, vol. 1, pp. 6-10, NY City, Apr. 28-May 1, 2002.
C. Fragouli et al., “Reduced-Complexity Training Schemes for Multiple-Antenna Broadband Transmissions,” Procedure of Wireless Communications and Networking Conference, vol. 1, pp. 78-83, Mar. 17-21, 2002.
Chihan Tepedelenlioglu et al., “Transmitter Redundancy for Blind Estimation and Equalization of Time-and Frequency-Selective Channels,” IEEE Transactions On Signal Processing, vol. 48, No. 7, pp. 2029-2043, Jul. 2000.
Deva K. Borah et al., “Frequency-Selective Fading Channel Estimation with a Polynomial Time-Varying Channel Model,” IEEE Transactions On Communications, vol. 47, No. 6, pp. 862-873, Jun. 1999.
Dennis L. Goeckel, “Coded Modulation With Non-Standard Signal Sets for Wireless OFDM Systems,” in Procedures International Conference Communications, Vancouver, BC, Canada, pp. 791-795, Jun. 1999.
Ezio Biglieri et al., “Fading Channels: Information-Theoretic and Communications Aspects,” IEEE Transactions on Information Theory, vol. 44, No. 6, pp. 2619-2692, Oct. 1998.
Fredrik Tufvesson et al., “OFDM Time and Frequency Synchronization by Spread Spectrum Pilot Technique,” in Procedures 8thCommunication Theory Mini-Conference, Vancouver, BC, Canada, pp. 1-5, Jun. 1999.
Georgios B. Giannakis, “Cyclostationary Signal Analysis,” The Digital Signal Processing Handbook, V.K. Madisetti and D. Williams, Eds. Boca Raton, FL: CRC, Chapter 17, 1998.
Georgios B. Giannakis et al., “Basis Expansion Models and Diversity Techniques for Blind Identification and Equalization of Time-Varying Channels,” Proceedings of the IEEE, vol. 86, No. 10, pp. 1969-1986, Oct. 1998.
Gerard J. Foschini, “Layered Space-Time Architecture for Wireless Communications in a Fading Environment When Using Multi-Element Antennas,” Bell Labs Technical Journal, vol. 1, No. 2, pp. 41-59, 1996.
Ghassan Kawas Kaleh, “Channel Equalization for Block Transmission Systems,” IEEE Journal on Selected Areas In Communications, vol. 13, No. 1, pp. 110-121, Jan. 1995.
Helmut Bolcskei et al., “Blind Channel Identification and Equalization in OFDM-Based Multiantenna Systems, ”IEEE Transactions on Signal Processing, vol. 50, No. 1, pp. 96-109, Jan. 2002.
Hui Liu et al., “A High-Efficiency Carrier Estimator For OFDM Communications,” IEEE Communications Letters, vol. 2, No. 4, pp. 104-106, Apr. 1998.
Hikmet Sari et al., “Transmission Techniques for Digital Terrestial TV Broadcasting,” IEEE Communications Magazine, vol. 33, pp. 100-103, Feb. 1995.
H. Vikalo et al., “Optimal Training for Frequency-Selective Fading Channels,” Procedures of International Conference on ASSP, Salt Lake City, Utah, vol. 4, pp. 2105-2108, May 7-11, 2001.
I. Barhumi et al., “Optimal Training Sequences for Channel Estimation in MIMO OFDM Systems in Mobile Wireless Communications,” Procedures of International Zurich Seminar on Access, Transmission, Networking of Broadband Communications, 6 pgs., ETH Zurich, Switzerland, Feb. 19-21, 2002.
I.Emre Telatar, “Capacity of Multipe-Antenna Gaussian Channels,” European Transactions, Telecommunications, vol. 10, pp. 1-28, Nov.-Dec. 1998.
Jens Baltersee et al., “Achievable Rate of MIMO Channels With Data-Aided Channel Estimation and Perfect interleaving,” IEEE Journal on Selected Areas In Communication, vol. 19, No. 12, 2358-2368, Dec. 2001.
Jerome A. Gansman et al., “Optimum and Suboptimum Frame Synchronization for Pilot-Symbol-Assisted Modulation,” IEEE Transactions on Communications, vol. 45, No. 10, pp. 1327-1337, Oct. 1997.
Jiann-Cing Guey et al., “Signal Design for Transmitter Diversity Wireless Communication Systems Over Rayleigh Fading Channels,” IEEE Transactions on Communications, vol. 47, No. 4, pp. 527-537, Apr. 1999.
Johnathan H. Manton et al., “Affine Precoders for Reliable Communications,” in Procedures International Conference ASSP, vol. 5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Space-time coded transmissions within a wireless... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Space-time coded transmissions within a wireless..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Space-time coded transmissions within a wireless... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3764481

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.