Space defining structure for magnetic homogenization

Electricity: magnetically operated switches – magnets – and electr – Magnets and electromagnets – Magnet structure or material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C335S302000

Reexamination Certificate

active

06552640

ABSTRACT:

TECHNICAL FIELD
The present invention relates, in general, to space defining structures for magnetic homogenization and, more particularly, to a space defining structure specifically designed to homogenize the magnetic field within its interior space, thus minimizing a malfunctioning or damage of electronic equipment or ill-effect on living matters within houses and buildings due to a localized geomagnetic disturbance, with such a localized geomagnetic disturbance generated by a variety of magnetic structures, such as the interior structures of the earth's crust, for example, stratum structures, underground water and water veins, a variety of magnetic materials, a variety of electronic devices or the reinforcing bars of houses or buildings.
BACKGROUND ART
As well known to those skilled in the art, geomagnetism is the earth's magnetic field and associated phenomena and is determined by both the exterior geo-current, caused by solar activity, and the interior geo-current caused by core activity, or the activity of the central portion of the earth. When solar wind, formed by sunspot activity or coronal activity of the sun, reaches the earth, a geomagnetic storm is formed on the earth and disturbs the ionospheric layer of the earth, and changes the external geo-current. Such a change in the external geo-current due to solar wind finally causes a geomagnetic disturbance. Such a geomagnetic disturbance also may be generated when localized geomagnetic characteristics fail to be homogenized due to the interior structures of the earth's crust, for example, stratum structures, underground minerals, petroleum layers, natural gas layers, underground water and water veins. Particularly, when localized geomagnetic permeability fails to accomplish a desired homogenization, it is almost impossible to homogenize the distribution of the geomagnetic flux density. This finally generates a localized geomagnetic disturbance.
In addition, houses, buildings or other reinforced concrete structures, including reinforcing bars, cause a localized geomagnetic disturbance due to the ferromagnetic reinforcing bars. Particularly, conventional steel frame construction buildings exceedingly disturb the geomagnetism, with some of such buildings forming a high intensity of magnetic field having a magnetic flux density of 2.5 gauss or higher.
Such a geomagnetic disturbance undesirably causes a malfunctioning or damage of electronic equipment or ill-effect on living matters within such houses and buildings. That is, most electronic equipment, such as computers, electronic watches and a variety of electronic measuring instruments, arranged in a space affected by the geomagnetic disturbance may be easily damaged or malfunction since the electrons are affected by the Lorentz force and are undesirably distorted in their activity when the electrons are included in the strong magnetic field formed by such a geomagnetic disturbance. In addition, the activity of living matters, such as animals, is reduced in such a space affected by the disturbed magnetic field.
Different from the electric field, it is impossible to shield the line of magnetic force within a magnetic field free from an electric field. However, the line of magnetic force within such a magnetic field free from the electric field may be preferably shielded by superconductors (diamagnetic materials), ferromagnetic materials or softmagnetic materials used as the shielding material for the line of magnetic force.
That is, when superconductors are appropriately arranged in a magnetic field to shield a target space within the magnetic field, the superconductors do not allow the line of magnetic force to pass through, and so the target space is free from the line of magnetic force. It is thus possible to shield the magnetic field free from the electric field.
However, the conventional method of shielding the line of magnetic force within a magnetic field free from an electric field is problematic in that it necessarily uses very expensive superconductors and always maintains a cryotemperature, or an ultra low temperature, so as to retain the desired superconductivity, thus increasing the maintenance cost of the magnetic field shielding system. For example, in the case of using metal superconductors as the magnetic field shielding material, it is necessary to maintain the system temperature at a liquid helium temperature, or 4.2° K. On the other hand, when ceramic high critical temperature superconductors are used as the magnetic field shielding material, it is necessary to maintain the system temperature at a liquid nitrogen temperature, or 198° K.
DISCLOSURE OF THE INVENTION
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a space defining structure for magnetic homogenization, which is specifically designed to homogenize the magnetic field within its interior space by effectively shielding the localized geomagnetic disturbance generated by a variety of magnetic substances, thus accomplishing a desired magnetic homogenization.
In order to accomplish the above object, the inventor of this invention repeatedly performed a plurality of experiments for fabricating an appropriate space defining structure for magnetic homogenization on the basis of the fact that it is possible to bypass focused lines of magnetic force to the exterior of the structure through a bypass path while partially and preferably shielding the magnetic field within a target space, requiring a magnetic field shielding structure, when the lines of magnetic force are focused to a point using both a ferromagnetic material and a softmagnetic material with the bypass path being formed outside the target space. The above experiments were performed with a plurality of magnetic field shielding structures, which used specifically selected magnetic materials capable of focusing the lines of magnetic force to a point, a variety of shapes of magnetic field focusing members, and a variety of shapes of bypass paths for the focused lines of magnetic force. From such experiments, the inventor of this invention finally realizes that it is possible to homogenize the distribution of magnetic field within such a target space by both an appropriate selection of specified magnetic materials for magnetic field focusing and dispersing members and an appropriate arrangement of the magnetic field focusing and dispersing members made of such appropriately selected magnetic materials. The space defining structure for magnetic homogenization of this invention is accomplished from the above-mentioned technical base.
This invention thus finally provides a space defining structure for magnetic homogenization, which is designed to homogenize the magnetic field within its interior space by shielding a localized geomagnetic disturbance generated by a variety of magnetic structures, such as the interior structures of the earth's crust, for example, stratum structures, underground minerals, underground water and water veins, a variety of magnetic materials, a variety of electronic devices or the reinforcing bars of the houses or buildings. The structure of this invention thus accomplishes a desirably homogenized distribution of geomagnetic flux density.
The space defining structure of this invention comprises a magnetic field focusing member forming the bottom wall of the space defining structure, with at least one magnetic field dispersing member extending from the magnetic field focusing member while defining a desired interior space of the structure in cooperation with the magnetic field focusing member. In the above structure, the magnetic field focusing member is made of a material including a magnetic material, having a magnetic permeability of not less than 10 Wb/A*m, an intensity of coercive magnetic field of not higher than 1.0 oersted (Oe), a saturated magnetic flux density of not less than 10 gauss, and a Curie point of not lower than 50° C. under the condition of a temperature range of &

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Space defining structure for magnetic homogenization does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Space defining structure for magnetic homogenization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Space defining structure for magnetic homogenization will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3017307

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.