Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Reexamination Certificate
2000-02-09
2001-11-13
Fox, David T. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
C800S260000, C800S265000, C800S266000, C800S267000, C800S268000, C800S278000, C435S415000, C435S419000, C435S421000, C435S426000, C435S430000, C435S430100, C435S468000
Reexamination Certificate
active
06316700
ABSTRACT:
FIELD OF THE INVENTION
This invention is in the field of soybean breeding, specifically relating to a soybean variety designated 90B73.
BACKGROUND OF THE INVENTION
The present invention relates to a new and distinctive soybean variety, designated 90B73 which has been the result of years of careful breeding and selection as part of a soybean breeding program. There are numerous steps in the development of any novel, desirable plant germplasm. Plant breeding begins with the analysis and definition of problems and weaknesses of the current germplasm, the establishment of program goals, and the definition of specific breeding objectives. The next step is selection of germplasm that possess the traits to meet the program goals. The goal is to combine in a single variety an improved combination of desirable traits from the parental germplasm. These important traits may include higher seed yield, resistance to diseases and insects, tolerance to drought and heat, and better agronomic qualities.
Field crops are bred through techniques that take advantage of the plant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is cross-pollinated if the pollen comes from a flower on a different plant. Soybean plants (
Glycine max
), are recognized to be naturally self-pollinated plants which, while capable of undergoing cross-pollination, rarely do so in nature. Insects are reported by some researchers to carry pollen from one soybean plant to another and it generally is estimated that less than one percent of soybean seed formed in an open planting can be traced to cross-pollination, i.e. less than one percent of soybean seed formed in an open planting is capable of producing F
1
hybrid soybean plants, See Jaycox, “Ecological Relationships between Honey Bees and Soybeans,” appearing in the American Bee Journal Vol. 110(8): 306-307 (August 1970). Thus intervention for control of pollination is critical to establishment of superior varieties.
A cross between two different homozygous lines produces a uniform population of hybrid plants that may be heterozygous for many gene loci. A cross of two plants each heterozygous at a number of gene loci will produce a population of hybrid plants that differ genetically and will not be uniform. Regardless of parentage, plants that have been self-pollinated and selected for type for many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny.
Soybeans, (
Glycine max
), can be bred by both self-pollination and cross-pollination techniques. Choice of breeding or selection methods depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of variety used commercially (e.g., F
1
hybrid variety, pureline variety, etc.). For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, and recurrent selection.
The complexity of inheritance influences choice of the breeding method. Pedigree breeding and recurrent selection breeding methods are used to develop varieties from breeding populations. Pedigree breeding starts with the crossing of two genotypes, each of which may have one or more desirable characteristics that is lacking in the other or which complements the other. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. In the pedigree method, superior plants are selfed and selected in successive generations. In the succeeding generations the heterozygous condition gives way to homogeneous lines as a result of self-pollination and selection. Typically in the pedigree method of breeding five or more generations of selfing and selection is practiced: F
1
→F
2
; F
2
→F
3
;F
3
→F
4
; F
4
→F
5
, etc.
Pedigree breeding is commonly used for the improvement of self-pollinating crops. Two parents that possess favorable, complementary traits are crossed to produce an F
1
. An F
2
population is produced by selfing one or several F
1
's or by intercrossing two F
1
's (sib mating). Selection of the best individuals may begin in the F
2
population; then, beginning in the F
3
, the best individuals in the best families are selected. Replicated testing of families can begin in the F
4
generation to improve the effectiveness of selection for traits with low heritability. At an advanced stage of inbreeding (i.e., F
6
and F
7
), the best lines or mixtures of phenotypically similar lines are tested for potential release as new varieties.
Backcross breeding has been used to transfer genes for simply inherited, highly heritable traits into a desirable homozygous variety or inbred line that is utilized as the recurrent parent. The source of the traits to be transferred is called the donor parent. After the initial cross, individuals possessing the desired traits of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., variety) and the desirable traits transferred from the donor parent. This approach has been used extensively for breeding disease resistant varieties.
Each soybean breeding program should include a periodic, objective evaluation of the efficiency of the breeding procedure. Evaluation criteria vary depending on the goal and objectives, but should include gain from selection per year based on comparisons to an appropriate standard, overall value of the advanced breeding lines, and number of successful varieties produced per unit of input (e.g., per year, per dollar expended, etc.).
Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of hybrid offspring from each successful cross.
Promising advanced breeding lines are thoroughly tested and compared to appropriate standards in environments representative of the commercial target area(s) for three or more years. The best lines are candidates for new commercial varieties; those still deficient in a few traits may be used as parents to produce new populations for further selection.
Publically available or newly-released varieties of soybean can also be used as parental lines or starting materials for breeding or as source populations from which to develop or derive other soybean varieties or breeding lines. These varieties or lines derived from publically available or newly-released varieties can be developed by using breeding methods described earlier, such as pedigree breeding, backcrossing and recurrent selection. As an example, when backcross breeding is used to create these derived lines or varieties in a soybean breeding program, publicly available or newly released varieties of soybeans can be used as a parental line or starting material or source population and can serve as either the donor or recurrent parent. See for example, Fehr, “Breeding Methods for Cultivar Development”, Chapter 7,
Soybeans Improvement, Production and Uses,
2
nd
ed., Wilcox ed. 1987.
These processes, which lead to the final step of marketing and distribution, can take from eight to twelve years from the time the first cross is made. Therefore, development of new varieties is a time-consuming process that requires precise forward planning, efficient use of resources, and a minimum of changes in direction.
A most difficult task is the identification of individuals that are genetically superior, because for most traits the true genotypic value is masked by other conf
Fox David T.
Pioneer Hi-Bred Int'l Inc.
Pioneer Hi-Bred International , Inc.
LandOfFree
Soybean variety 90B73 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Soybean variety 90B73, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soybean variety 90B73 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2573330