Soybean sudden death syndrome resistant soybeans, soybean...

Multicellular living organisms and unmodified parts thereof and – Method of using a plant or plant part in a breeding process... – Method of breeding involving a genotypic or phenotypic marker

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S265000, C800S266000, C536S023100, C536S024300, C435S006120

Reexamination Certificate

active

06300541

ABSTRACT:

TECHNICAL FIELD
The present invention relates to soybeans and methods of soybean breeding. More particularly, the invention relates to soybean sudden death syndrome resistant soybean lines and methods of breeding same, the method involving genetic marker analysis; and soybean cyst nematode resistant soybean line and methods of breeding same, the methods involving genetic marker analysis.
The publications and other materials used herein to illuminate the background of the invention, and in particular cases, to provide additional details respecting the practice, are incorporated herein by reference, and for convenience, are referenced by author and data in the following text, and respectively group in the appended list of references.
BACKGROUND OF THE INVENTION
Soybeans are a major cash crop and investment commodity in North America and elsewhere. Soybean oil is one of the most widely used edible oils, and soybeans are used worldwide both in animal feed and in human food production.
Soybean sudden death syndrome (SDS) is a fungal disease of soybean (Glycine max (L.) Merr.), caused by
Fusarium solani
(Mart.) Sacc. f. sp.
phaseoli
(Burk.) Snyd. & Hans., type A (Rupe, 1989; Roy et al., 1989, O'Donnell and Gray, 1995). Since its discovery SDS has become one of the most destructive pests in soybean. It has been reported in nearly all states that soybean are grown, and it causes production problems in several states, being particularly destructive in Midwestern states. See generally (Mulrooney 1988, Gibson et al., 1994, Hartman et al., 1995, Wrather et al., 1995, 1996). For example, susceptible soybean cultivars had 5-60% lower yield than did resistant cultivars on
F. solani
infested sites in Illinois (Gibson et al., 1994).
Although the use of fungicides is effective in reducing the population level of the fungus, fungicide use is both uneconomical and environmentally unsound as a control measure in soybean production. Neither is crop rotation a practical means of fungal control since rotation with a non-susceptible crop for at least two years is necessary for reducing soybean losses. Therefore, it has long been felt by soybean breeders that use of resistant varieties is the most practical control measure.
Screening of soybean germplasm for resistance to SDS was begun soon after the discovery of the fungus in the U.S. (Gibson et al., 1994; Rupe et al., 1991). Soybean breeding for resistance to SDS has mostly utilized genes from the cultivar ‘Forrest’ (Hartwig 1970) and ‘Pyramid’ (Myers et al., 1980). However, low yield of these cultivars necessitates the introgression of their SDS resistance into elite germplasm with a minimum of linkage drag.
Resistance to SDS is multigenic and quantitative in soybean (Hnetkovsky et al., 1996; Njiti et al., 1996). Chang et al., (1996, 1997) estimated that Forrest has 5 genes required for resistance to SDS. Njiti et al., (1996) and Kilo et al., (1996) estimated that Pyramid has 3 genes required for resistance to SDS, 2 that were different from those in Forrest. The multiple genes and genetic backgrounds involved contribute to the difficulty breeders have in developing SDS resistant soybean varieties.
Breeding programs for SDS resistance rely primarily on field evaluations where fungal populations occur. However, these populations can be mixtures of undetermined amplitypes (Achenback et al., 1996) and the environment can vary thereby affecting the overwintering and infection capability of the fungus. Although evaluations using single oospore based fungal isolates in controlled greenhouse environments are possible, they are prohibitively expensive and are difficult to manage for larger breeding programs. These deficiencies in each evaluation method made SDS a difficult trait for soybean improvement.
Genetic markers closely linked to important genes may be used to indirectly select for favorable alleles more efficiently than direct phenotypic selection (Lander and Thompson 1990). SDS resistance loci have been associated with RFLP and microsatellite markers and tentatively mapped to linkage groups G (two), N and C1 (from Forrest); to linkage group C2 (from Essex); to linkage groups A2, B and G (from Pyramid) (Hnetkovsky et al., 1996; Chang et al., 1996, 1997; Abu-Thredeih et al., 1996; Kilo et al., 1996; Torto et al., 1996). In addition SDS resistance loci have been associated with the SCN resistance phenotype (Gibson et al., 1994) and soybean cyst nematode (SCN) resistance loci rhg1, rhg3 and Rhg4 on linkage groups G, B, and A2 respectively (Webb et al., 1995; Chang et al., 1996, 1997; Abu-Thredeih et al., 1996; Kilo et al., 1996).
U.S. Pat. No. 5,491,081, issued to Webb with Assignee Pioneer HiBred International, Inc. describes a method for introgressing SCN resistance into soybean germplasm as well as quantitative trait loci associated with SCN. It also describes SCN as a particular problem to soybean breeders and farmers. However, this patent does not discuss soybean SDS.
Therefore, it is of particular importance, both to the soybean breeders and to farmers who grow and sell soybeans as a cash crop, to identify, through genetic mapping, the quantitative trait loci (QTL) for resistance to SDS, and to identify additional QTL for resistance to SCN. Knowing the QTLs associated with resistance to SDS and to SCN, soybean breeders will be better able to breed SDS resistant and SCN resistant soybean that also possess other genotypic and phenotypic characteristics required for commercial soybean lines.
DISCLOSURE OF THE INVENTION
The invention provides a method of introgressing SDS and SCN resistance into non-resistant soybean germplasm. Loci associated with SDS resistance in soybean lines known to be resistant to SDS are used in marker assisted selection during introgression of SDS resistance into elite germplasm. Loci associated with SCN resistance in soybean lines known to be resistant to SCN are used in marker assisted selection during introgression of SCN resistance into elite germplasm. In addition the method may be used to confirm selection of resistance in new soybean cultivars.
The present invention provides a method of introgressing SDS resistance into non-resistant soybean germplasm. Loci associated with SDS resistance in soybean lines known to be SDS resistant are used in marker assisted selection during introgression of SDS resistance into elite soybean germplasm. Examples of soybean germplasm known to be resistant to SDS include Forrest, Pyramid, Essex, Ripley, Jack, Hartwig, PI520.733. PI567507B, PI567.365, PI567.446B and PI567.373B. The method of the present invention can be used to breed soybeans resistant to any SDS causing
F. solani
strain.
The method of the present invention comprises the use of nucleic acid markers genetically linked to loci associated with SDS resistance in lines known to be resistant to SDS. The markers are used in genetic mapping of genetic material of soybean lines to be used in and/or which have been developed in a breeding program, allowing for marker assisted selection during introgression of SDS resistance into elite germplasm.
According to the method of the invention, any art-recognized genetic mapping techniques can be utilized, with preferred embodiments utilizing Restriction Fragment Length Polymorphism (RFLP) mapping, AFLP mapping, RAPD mapping or microsatellite mapping, using the nucleic acid markers recognized or applicable to the particular method(s). Markers useful in genetic mapping include, for example, the following: For linkage group G, OI03
450
, OI03
512
, SATT309, SATT275, SIUSAT122, CTAAGG280, CGGAGA300, ATGCGA190, AGGCAC310, CCACCA120, CCCTC220, ACGCAT80, OG13
490
, Bng122, SATT163 and SATT38; A112I, OE04
450
, OE02
1000
, and SATT130. For linkage group N OC01
500
, OO04
1075
and SATT9; For linkage group C2, OO05
250
, K455D and OP13
500
; For linkage group B or d, OG01
1000
, SZ19
500
, and SATT71; or linkage group A2, OW15
1000
, AO85, OA12
1000
, BLT65, CCAAGC309, CCCATG349, CCGAAC400, CCGAAC401, CCCATG350, CCAAGC310, OW15500, OD04
500
. For linkage group C1, A063I and SAT40.
An

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Soybean sudden death syndrome resistant soybeans, soybean... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Soybean sudden death syndrome resistant soybeans, soybean..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soybean sudden death syndrome resistant soybeans, soybean... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587996

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.