Soybean peroxidase gene family and an assay for detecting...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C435S320100

Reexamination Certificate

active

06586583

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the DNA sequences of the soybean peroxidase, and to the enzymatic assay of peroxidase activity. The invention further relates to the use of soybean peroxidase in immunoassays or oligonucleotide detection. The invention also relates to medical, environmental diagnostics and generally to oligonucleotides employing anti-soybean peroxidase monoclonal antibody. In addition, the present invention is directed to a promoter and regulatory sequences within the promoter. The present invention is also directed to DNA molecules including one or more of said regulatory sequences or full length promoter, such as a DNA construct comprising the regulatory region or full length promoter operably linked to one or more genes or antisense DNA. The invention is further directed to transformed plant tissue including the DNA molecule and to transformed plants and seeds thereof.
The publications and other materials used herein to illuminate the background of the invention or provide additional details respecting the practice of the invention, are incorporated by reference, and for convenience are respectively grouped in the appended list of references.
Function of Peroxidase in Biological Systems
Peroxidase is a class of proteins whose primary function is to oxidize a variety of hydrogen donors at the expense of peroxide or molecular oxygen. Areas where peroxidase could have an immediate use are: pulp and paper bleaching; on-site waste destruction; soil remediation; organic synthesis; and diagnostic chemistries.
At present, pulp and paper is bleached using chloride ions as a chemical agent. Soybean peroxidase has several advantages over chlorine bleach: lower cost; environmentally friendly; and hydroxyl ions produced by peroxidase have twice the oxidation power of chlorine ions.
In waste water and soil treatments, peroxidase has advantages since many organic compounds are toxic, inhibitory, or refractory to microbes, and certain organic compounds may result in the production of microbial products that produce toxic or offensive effluent.
The use of oxidation to achieve on-site destruction or detoxification of contaminated water and waste will increase in the future. If carried out to its ultimate stage, oxidation can completely oxidize organic compounds to carbon dioxide, water and salts.
Peroxidase has several uses in organic synthesis. Using peroxidase, researchers synthesized conductive polyaniline that produced only water as a by-product. Peroxidase can also be used in the manufacturing of adhesive and antioxidant intermediates.
Enzymes are now widely used in medical and environmental diagnostics. Horseradish peroxidase has been one of the most satisfactory enzymes but is relatively expensive. It has now been found that soybean peroxidase can be readily harvested from soybean hulls at minimal expense and be substituted for horseradish peroxidase in these diagnostic chemistries.
Several diagnostic chemistries using the enzymatic activity of horseradish peroxidase and polyclonal antibodies have been described in the literature. Horseradish peroxidase has been used for diagnostic determinations of various analytes and has been used as a label in enzyme labeled antibodies used in the determination of immunologically reactive species (i.e., immunoassays). Such determinations can be carried out in solution or in dry analytical elements.
One type of useful assay utilizes enzymatic reactions wherein the analyte, upon contact with the appropriate reagents, reacts with oxygen in the presence of a suitable enzyme to produce hydrogen peroxide in proportion to the concentration of the analyte. A detectable product such as a visible or fluorescent dye is then produced by the reaction of hydrogen peroxide in proportion to the concentration of the analyte in the tested liquids. Peroxidase is generally used in such assays to catalyze the oxidation of the interactive composition by hydrogen peroxide. One example of such an assay is a glucose assay using glucose oxidase. Glucose is oxidized in the presence of oxygen by the enzyme, glucose oxidase, to produce glucolactone and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide oxidizes a colorless dye such as tetramethylbenzidine to produce a colored product.
Another type of assay utilizes an immunologically reactive compound such as an antibody. These chemistries can be generally classified into two groups, namely, conjugate or enzyme labeled antibody procedures, and non-conjugate or unlabeled antibody procedures. In the conjugate procedures, the enzyme is covalently linked to the antibody and applied to a sample containing the immobilized antigen to be detected. Thereafter the enzyme substrate, e.g., hydrogen peroxide, and an oxidizable chromogen such as a leuco dye are applied. In the presence of the peroxidase, the peroxide reacts with the chromogen resulting in the production of color. The production of color indicates the presence and in some cases the amount of the antigen. In another method, a competing substance is used to dislodge an antibody enzyme conjugate from an immobilized substrate, leading to an absence of color.
In a method sometimes referred to as the sandwich assay or enzyme linked immunosorbent assay (ELISA), a first antibody is bound to a solid support surface and contacted with a fluid sample suspected to contain the antigen to be detected and an enzyme-antibody conjugate. The antigen complexes with the antibody and the conjugate bonds to the antigen. Subsequent introduction of the substrate and chromogen produces a visual indication of the presence of the antigen.
Procedures employing non-conjugated enzymes include the enzyme bridge method and the peroxidase-antiperoxidase method. These methods use an antiperoxidase antibody produced by injecting peroxidase into an animal such as a goat, rabbit or guinea pig. The method does not require chemical conjugation of the antibody to the enzyme but consists of binding the enzyme to the antigen through the antigen-antibody reaction of an immunoglobulin-enzyme bridge. In the enzyme bridge method a secondary antibody acts as an immunologic bridge between the primary antibody against the suspected antigen and the antiperoxidase antibody. The antiperoxidase antibody in turn binds the peroxidase which catalyzes the indicator reaction. In the peroxidase-antiperoxidase method, a complex of the peroxidase and the antiperoxidase antibody is formed. This complex can then be used in the immunologic bridge method.
Though peroxidase genes from different biologic sources have been identified, including other plant peroxidase genes from horseradish, tomato, pea, arabidopsis, peanut and turnip, and bacterial lignin peroxidase gene, there have not been any reports regarding identification of peroxidase genes from soybean.
Soybean coats are abundant and inexpensive, making them an excellent source of peroxidase. Therefore, there is substantial interest in cloning soybean peroxidase genes which will open the possibility of characterization of the expression patterns of individual peroxidase isoforms during normal plant development and genetic and molecular manipulations for increased peroxidase activity.
Regulation of Transcription and Translation
Eukaryotic genes consist of a transcription/translation initiation region, a coding region and a termination region. The transcription/translation initiation region is typically located upstream of the coding region, or in other words, entirely to the 5′ terminal end of the coding region. This initiation region includes a “promoter” region, which contains the signals for RNA polymerase to begin transcription so that synthesis of the coded protein can proceed. In addition, there are “untranslated sequences” responsible for binding to ribosomes and translation initiation. The translation-related regions of these “upstream” regulatory sequences vary in length and base composition from gene to gene and may be comprised of 100 bp or as much as 1 kbp.
The characteristics of the promoter will det

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Soybean peroxidase gene family and an assay for detecting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Soybean peroxidase gene family and an assay for detecting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soybean peroxidase gene family and an assay for detecting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3083464

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.