Sound reproduction equipment and method for reducing the...

Electrical audio signal processing systems and devices – Dereverberators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S071100

Reexamination Certificate

active

06795557

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to sound reproduction equipment and method for reducing the level of acoustical reflections in a room.
Methods concerned in the invention are used in conjunction with electrical systems intended for producing sound including sound reproduction equipment or electronic music instruments in order to attenuate acoustic reflections in a space into which the sound is being reproduced. Such a space may be, e.g., a room arranged for listening music or monitoring sound quality.
2. Description of the Related Art
In the prior art, undesired acoustic reflections and room resonances have been attenuated by generating such a cancelling sound wave that via the destructive interference of acoustic waves attenuates the unwanted sonic pressure wave components. The cancelling wave to an original sound wave is acoustic energy incident at the same frequency and at least essentially out-of-phase with the original sound wave. In turn, the amplitude of the cancelling wave determines the degree of sound attenuation. In order to achieve perfect cancellation of the original sound, the cancelling wave must have a frequency and amplitude exactly equal to those of the original sound and a phase exactly opposite to that of the original sound at a given spatial point. If the undesired sound is composed of a plurality of frequencies, the above-listed cancellation criteria must be fulfilled separately for each frequency component of the sound to be cancelled. This technique is described in U.S. Pat. No. 2,043,416, for instance.
When generating a cancelling sound wave, it is necessary to know the properties of the sound to be attenuated with a reasonable accuracy in order to produce the required cancelling sound signal in a proper manner. Conventionally, this is accomplished through, e.g., measuring the sound to be cancelled by a microphone, processing the measured signal in order to produce the required cancelling sound signal and converting the processed signal into a physical cancelling sound by a loudspeaker mounted at the desired point of cancellation. The placement of the microphone in respect to the loudspeaker in the direction of sound propagation has been dictated by the selected cancellation technique depending on whether the so-called feedforward or the so-called feedback method is used.
In the feedforward method, the microphone has been located in front of the loudspeaker in the direction of propagation of the sound to be cancelled, at a point permitting the microphone to measure the sound to be cancelled alone, without being responsive to the cancelling sound wave. The measured signal has been processed in respect to the signal delay in the sound cancellation equipment and the signal transfer function plus the acoustic propagation delay of the sound to be attenuated between the microphone and the loudspeaker radiating the cancelling sound wave. In a practicable system, there is further needed a second microphone located after the loudspeaker in the direction of the original sound propagation, whereby the signal of the second microphone is used for monitoring the efficiency of sound cancellation and for controlling the signal level to be fed to the loudspeaker. The feedforward-type generation of the cancelling sound wave is described in U.S. Pat. No. 4,122,303, for instance.
In the feedback method, the microphone is located after the loudspeaker in the direction of propagation of the sound to be cancelled, whereby the microphone is responsive to both the loudspeaker radiating the original sound and the loudspeaker radiating the cancelling sound wave. The goal herein generally is to minimize the amplitude of the signal measured by the microphone or at least to bring it down to a desired level. If also the microphone is located after the loudspeaker in the direction of propagation of the sound to be cancelled, the method must be capable of predicting the level of the signal to be attenuated on the basis of the measured interference signal. To attain a good attenuation efficiency, a number of different methods of processing the measured signal have been developed. A more detailed description of the cancellation signal processing technique can be found in U.S. Pat. No. 4,878,188, for instance. The prior art also includes cancellation sound generation techniques based on combinations of feedforward and feedback methods.
In U.S. Pat. No. 4,899,387 is further disclosed an apparatus for cancelling low-frequency acoustic resonances in a room used as an acoustic space. The apparatus is particularly suited for improving room acoustics in listening to music. The major single factor causing acoustic frequency response variations typically is the listening room itself that may readily cause deviations as large as 20 dB at some frequency in the amplitude response in a given point of the listening room. These deviations are caused by the interference of sonic pressure waves reflecting from the walls of the listening room with pressure waves radiated directly from the loudspeakers. Obviously, the need for improved listening room acoustics is urgent.
The embodiment described in cited U.S. Pat. No. 4,899,387 attempts to solve the above-described problem by placing cancellation apparatus units in the room at the pressure maxima or in the immediate vicinity thereof. Said cancellation apparatuses comprise a microphone for sensing the sound pressure waves and signal processing means and a cancelling loudspeaker for producing the cancelling pressure waves to the reflected original sound thus measured. In this arrangement, the microphone is located close to the cancelling loudspeaker, and with the help of a feedback circuit, the goal is to alter the acoustic impedance of the cancelling loudspeaker such that the effect of the room acoustics on the smoothness of the sound field is eliminated. This technique bears the risk of instability of the feedback loop that also includes the sound cancellation apparatus itself, whereby the system may start to oscillate.
In Pat. Appl. No. JP 6-62499 is disclosed another system for eliminating reflected pressure waves. Differently from those described above, this arrangement uses no microphones placed in the listening room, but rather the signal is sampled directly from the stereophonic audio system used for producing the original audio signal. The system disclosed in cited publication JP 6-62499 comprises cancelling loudspeakers placed in the listening room and a cancellation signal generator adapted to feed said loudspeakers. The cancellation signal generator itself includes delay and amplitude control circuits for delaying the signals of the left and right audio channels and for setting the signal amplitudes separately for each cancelling loudspeaker. The cancellation signal generator further includes summer circuits for combining the signals processed in the delay and amplitude control circuits into output signals to be taken to each of the cancelling loudspeakers and inverter circuits for inverting the phase of each combined signal. The delay circuits are controlled to delay each signal individually by the time of sound propagation from the original sound loudspeaker to the cancelling loudspeaker. E.g., in a system of four cancelling loudspeakers, the signals for each loudspeaker are formed from the signals of both the left and the right channel with appropriate delays. Additionally, also the signals of the loudspeakers and/or cancelling loudspeakers reflected from the walls can be taken into account, whereby a different delay and gain must be set for each signal separately.
A problem in the apparatus of cited publication JP 6-62499 is that, in spite of the extremely complicated technique of cancellation signal generation, the system is incapable of eliminating all the reflections occurring in the listening room and particularly not the diffraction waves caused by obstacles in the listening room. It must also be noted that the point-source type cancellation sound radiators used according to the publication ev

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sound reproduction equipment and method for reducing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sound reproduction equipment and method for reducing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sound reproduction equipment and method for reducing the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3212521

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.