Data processing: speech signal processing – linguistics – language – Speech signal processing – Application
Reissue Patent
2000-06-09
2004-11-23
McFadden, Susan (Department: 2655)
Data processing: speech signal processing, linguistics, language
Speech signal processing
Application
C105S001500, C318S051000, C704S201000
Reissue Patent
active
RE038660
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention generally relates to a modular device, system and method for storing, playing back and recording audio data. More specifically, the present invention relates to a modular device, system and method for reproducing audio data, such as voice and sound effects in a realistic manner.
It is, of course, generally known to generate simulated sounds in response to external stimuli, such as motion. One common industry in which sound production is often simulated is the model railroad industry. Sounds, such as those made by various animals, such as cows, sheep, pigs, and the like, are often reproduced. These sounds are typically generated in connection with a particular car of a railroad to enhance the interest and realism of the model railroad.
Another example of sounds being generated in conjunction with model trains is the heightened realism attained when used with a steam or diesel locomotive. In the past, when sound features have been controlled in conjunction with a model locomotive, methods other than motion have been used to turn these types of sound effects on and off. Some of these methods have been: DC voltage superimposed upon an AC voltage, magnets, reed switches or Hall effect sensors. The use of radio signals or a carrier control signal superimposed upon an AC or DC voltage have been used as well. Furthermore, a separate controller, which varies either AC or DC voltage or current, was required to control the speed and direction of the model train. There has not been a means to integrate all simulated controllable functions a model train may have into a model locomotive or car.
A need, therefore, exists to realistically reproduce and control sound effects, control model train motors and special effects. This need can be best filled by using a sound unit and Digital Command Control for controlling simulated sounds and simultaneously control propulsion of the model trains. Digital Command Control is a type of control that makes use of a digital bi-polar signal to control model trains. As defined in the NMRA Standards, the National Model Railroad Association baseline, Digital Command Control signal consists of a stream of transitions between two equal voltage levels that have opposite polarity. Alternate transitions are separate binary bits in a transmission stream. The remaining transitions divide each bit into a first part and last part. Use of this format gives the hobbyist the most choices for controlling aspects of a sound unit mounted in a model train as a self contained unit or in a track side structure as a accessory.
An example of a known sound effect producing model railroad car is described in U.S. Pat. No. 5,267,318 to Severson et al. The '318 patent teaches a speech synthesis circuit for playing selected cow voices stored as digital data in an EPROM. In a random mode of operation, a state generator provides a pseudo-random count that is used to select among four different cow voices, one of which is silence. The resulting audio output is perceived as random contented cow sounds. A pendulum motion detector provides an indication of lateral motion of the system. An up/down motion counter maintains a motion count reflecting the level of excitation of the system and the cows. The motion counter increments responsive to motion and decrements gradually in the absence of detected motion. A motion count of at least four invokes a triggered mode of operation in which the counter output is used to select among four different excited cow voices.
In the alternate embodiment of the present invention that uses only the sound reproduction apparatus, its improvement over the '318 patent is that no motion counter, micro-controller or state generator is needed to generate a response to a lateral movement of the sound car. The simple movement of the car is all that is needed to cause a response from the sound memory to play-back simple sound effects.
Previous inventions that have tried to control sound effects for model locomotives have only utilized an electromechanical means to control the synchronized sound functions whereas the present invention controls all aspects using digital control of the following: sound, model locomotive speed, direction and special effects on board. Another known system that relates to model trains is U.S. Pat. No. 5,174,216 to Miller et al. In the '216 patent, there is no means to execute sound effects at the model train enthusiast's discretion or to control speed, direction or other onboard special effects. The '216 patent also utilizes a single chuff sample for all speeds, that is controlled using an opto-sensor to define an on or off state. The opto-sensor simply controls one chuff sound effect no matter at what speed the model locomotive may be traveling. The speed simply determines the rate of the chuff. It cannot select from a set of speed sound effects that give a better simulation of different speeds and
work loads
work-
loads
. The present invention overcomes this deficiency by comparing the on-off rate of the sensor to the digital speed packet. Furthermore, the '216 patent makes use of a limited menu of bell, whistle or horn sound effects that are triggered through the use of a Hall effect and various
combination
combinations
of magnets that are interpreted by a micro controller. The micro-controller then determines which bell/horn whistle sound effects to play. This system relies upon magnets placed along the model railway at specific points. The '216 patent system does not allow for any random play-back or variance of the predetermined menu of sound effects. The '216 patent relies upon a variable AC or DC voltage to control the frequency of the steam chuff or the amplitude of the diesel throb. The previously mentioned variable track voltage is also used to supply current to the sound reproduction circuitry. Because of the variable nature of the power supply for speed control, in order to hear sound effects through all voltage ranges especially in the 0 to 5 volt range, a switchable power supply is needed to change between the track supplied power and a battery back-up contained within the model train locomotive or car.
The '216 patent also is deficient in that it is not able to discretely control sound effects, or regulate the speed of a model locomotive, control direction and other onboard special effects at any random location. The '216 patent is only able to trigger specific sound effects at predetermined locations, and a battery back-up is required for use in all voltage ranges. Because the '216 patent makes use of the variable track supplied power to supply voltage for the circuitry and regulation of the chuff or diesel sound effects, it is unable to operate at slow prototype speeds in a model setting.
There have been attempts at controlling the speed of a model locomotive, sound and special effects to overcome the above deficiencies. One known system that attempted to do this is taught in U.S. Pat. No. 4,914,431. In this patent, the motor controller device is used with AC-powered model trains where typically these types of trains make use of variable AC voltage to control the speed of a locomotive, typically described as “Lionel trains.” Furthermore, these types of trains make use of a three-position switch that is controlled by a solenoid to determine forward, neutral or reverse. This unit is called a reverse unit, which the '431 patent is designed to operate exclusively. The scope of the '431 patent is intended to sync the electronic reverse units of a master and slave locomotive. Furthermore, the control system uses state generators for expansion of the remote control effects found on a model locomotive. This is accomplished by simply using a positive and or negative DC digital pulse repeatedly applied to create and to control a plurality of state control signals. Although each motor controller can operate up to sixteen states, only four state generators are enabled for use. This pulse signal is superimposed on
Boles Kelly
Fleszewski, III Vincent S.
Novosel Michael J.
McFadden Susan
Patents & TMS P.C.
Real Rail Effects, Inc.
LandOfFree
Sound recording and reproduction system for model train... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sound recording and reproduction system for model train..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sound recording and reproduction system for model train... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3306780