Furnaces – Combined
Reexamination Certificate
2002-02-11
2003-09-09
Lazarus, Ira S. (Department: 3749)
Furnaces
Combined
C110S1010CD, C110S1010CF, C110S1010CD
Reexamination Certificate
active
06615750
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a sorbent conditioning and direct feed apparatus which is suitable for use in association with a fossil fuel-fired steam generator including, in particular, a circulating fluidized bed steam generator in a new utility unit application or a retrofit application in an existing utility unit.
Limestone is a natural mineral principally comprised of calcium carbonate, CaCO3, and limestone is used as a desulfurizing or scrubbing medium in fluidized bed combustion units. In these units, combustion materials such as coal and the like are fluidized and combusted in a combustion vessel by contact with upflowing high temperature gasses. Limestone can be mixed with the combustion materials prior to feeding of the combined fuel-sorbent mixture into the unit and the desulfurization process takes place during combustion.
Since the scrubbing or desulfurization process is a chemical reaction, the proper stoichiometric ratio of limestone containing calcium carbonate to flue gas will produce the most efficient reaction. In order for the desulfurization reaction to proceed efficiently and with minimal waste, the limestone must be conditioned such as by grinding to produce a defined particle size prior to use and it is particularly important in the fluidized bed combustion process to control limestone particle size distribution so as to thereby ensure an efficient desulfurization process. If the particles are too large, the desulfurization process will not be efficient because there is insufficient limestone particle surface area to react with the flue gas. On the other hand, if the particles are too small, the limestone will be carried out of the vessel with the flue gas before it can react to remove the sulfur.
Conventional limestone preparation systems often include a drying system having a cyclone or baghouse and typically comprise as well storage hoppers, conveyors, crushing and grinding machines and, in some configurations, vibrating screens. Such conventional systems effect particle size reduction of the limestone in discrete steps including, for example, multiple passes of the limestone particles through size reduction units which is typically performed to progressively reduce the particle size from a relatively larger or coarse particle size to a relatively smaller or fine particle size suitable for introduction into the combustion vessel. Thus, it can be appreciated that such conventional limestone preparation systems generally have a complexity which contributes significantly to their cost and the number of processing operations and transport paths between the various components adds to the operational complexity and maintenance costs of such systems.
Conventional limestone storage and feed systems also typically require separate preparation and storage facilities for the raw sorbent and these facilities add to the capital cost of the utility unit. Also, such facilities may be sited several hundred meters from the combustor of the utility unit, thus adding to the overall space requirements of the utility unit.
SUMMARY OF THE INVENTION
To thus summarize, a need has been evidenced in the prior art for a sorbent conditioning and direct feed apparatus that would be particularly suited for use in effecting the pulverization of sorbent material such as, for example, limestone, and the feed thereof directly to a steam generator including, in particular, a circulating fluidized bed steam generator.
It is, therefore, an object of the present invention to provide a new and improved sorbent conditioning and direct feed apparatus that is particularly suited for use in effecting the pulverization of sorbent material such as, for example, limestone, and the feed thereof directly to a steam generator including, in particular, a circulating fluidized bed steam generator.
Yet a further object of the present invention is to provide such an improved sorbent conditioning and direct feed apparatus which is suitable for installation in new steam generator facilities including, in particular, a circulating fluidized bed steam generator facility.
Yet another object of the present invention is to provide such an improved sorbent conditioning and direct feed apparatus which is capable of being retrofitted in connection with existing steam generator facilities including, in particular, a circulating fluidized bed steam generator facility.
In accordance with one aspect of the present invention, these and other objects of the present invention are achieved by an improved sorbent conditioning and direct feed apparatus which is suitable for installation in new steam generator facilities including, in particular, a circulating fluidized bed steam generator facility and which is capable of being retrofitted in connection with existing steam generator facilities including, in particular, a circulating fluidized bed steam generator facility.
In accordance with the present invention, there is thus provided a sorbent conditioning and direct feed apparatus operable to effect the direct feeding of a conditioned solid sorbent to the combustor. The apparatus includes a raw solid sorbent storage means and a particle size reducing means for reducing the particle size of solid sorbent supplied thereto from the raw solid sorbent storage means from a relatively larger coarse particle size to a relatively smaller fine particle.
Also, the apparatus includes transport for transporting solid sorbent which has been conditioned by the particle size reducing means to the combustor in a manner in which, on average, at least ninety percent (90%) of the conditioned solid sorbent are delivered from the particle size reducing means to the combustor in less than thirty (30) minutes) following their size reduction, whereby conditioned solid sorbent is fed to the combustor with substantially no intermediate storage of the solid sorbent between the raw solid sorbent storage means and the transport means.
According to one aspect of the preferred embodiment of the present invention, the combustor is a fluidized bed combustor. According to another aspect of the preferred embodiment of the present invention, the transport means is a fuel feed transport means operable to transport as well conditioned solid fossil fuel to the fluidized bed combustor, whereby the conditioned solid sorbent and the conditioned solid fossil fuel are fed as a mixture to the fluidized bed combustor. Additionally, the sorbent conditioning and direct feed apparatus preferably comprises control means operatively connected to the raw solid sorbent storage means, the particle size reducing means, and the transport means for controlling the feed of conditioned solid sorbent to the fluidized bed combustor in accordance with a predetermined sorbent feed regime.
According to yet another aspect of the preferred embodiment of the present invention, the sorbent conditioning and direct feed apparatus further comprises means for sensing an operating condition of the fluidized bed combustor operatively connected to the control means, the control means being operable to control the feed of conditioned solid sorbent to the fluidized bed combustor in response to a sensed operating condition of the fluidized bed combustor. The means for sensing an operating condition of the fluidized bed combustor can be operable to sense a sulfur concentration in the fluidized bed combustor.
According to a further additional aspect of the preferred embodiment of the present invention, the particle size reducing means is a roller mill. Alternatively, the particle size reducing means is a roll crusher. Also, according to a supplemental aspect of the preferred embodiment of the present invention, the conditioned solid fossil fuel is subjected to a separate particle size reduction operation prior to the supply thereof to the transport means and the fluidized bed combustor is supplied by the transport means with a mixture of conditioned solid fossil fuel and conditioned solid sorbent. The transport means may alternatively be configured as a pneumatic tran
Durant James F.
Ferguson John E.
Jukkola Glen D.
Rogers Reed S C.
Alstom (Switzerland Ltd
Lazarus Ira S.
Rinehart K. B.
Warnock Russell W.
LandOfFree
Sorbent conditioning and direct feed apparatus for a steam... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sorbent conditioning and direct feed apparatus for a steam..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sorbent conditioning and direct feed apparatus for a steam... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3030236