Communications – electrical: acoustic wave systems and devices – Distance or direction finding – By combining or comparing signals
Reexamination Certificate
2002-06-05
2003-11-25
Pihulic, Daniel T. (Department: 3662)
Communications, electrical: acoustic wave systems and devices
Distance or direction finding
By combining or comparing signals
Reexamination Certificate
active
06654315
ABSTRACT:
STATEMENT OF THE GOVERNMENT INTEREST
The invention described herein may be manufactured and used by or for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or therefore.
CROSS REFERENCE TO RELATED PATENT APPLICATIONS
Not applicable.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates generally to sonar displays and, more particularly, to a system and method suitable for displaying the outputs of multiple broadband processors with different detection algorithms whereby each multiple broadband processor operates on N-channels of sonar data from a towed array.
(2) Description of the Prior Art
It is well known that submarines and other vessels may utilize different types of towed arrays of sonar sensors for receiving sonar data. The towed array may typically have some number, N, of channels wherein the number of channels is typically related to the number of sonar detectors in the array. For instance, there may be one channel output for each acoustic sensor input to provide for conservation of energy with respect to each sensor. Each channel output may typically be considered as a beam “pointed to” a particular listening direction. With fewer beam outputs, information is lost. With more beams, the outputs are merely interpolated values of the input set. So if, for example, there are N=10 sensor inputs, then there may be N=10 independent beam outputs steered in N=10 different directions.
The information is processed to determine various attributes of targets. For instance, bearing is a measure (as a function of time) of the angle to the target (or acoustic source) relative to true North or relative to the direction of the ship's heading. Bearing rate is the rate of change of the bearing with respect to time. High bearing rate contacts are close to the array and tend to be relatively easy to spot. With respect to relative bearings, low bearing rate contacts tend to fall into one of three categories: opening away, running on parallel velocity, or on a collision course.
For processing the data received by the particular type of towed sonar array, different types of broadband detection processing schemes may be used. Each type of broadband detection processing scheme will typically have different advantages and disadvantages depending on the particular type of scenario of use. However, in the past, the output of each broadband detection processing scheme has required a separate display format. Due to the difficulty of viewing two different displays concurrently or one at a time, it would be desirable to provide a single display, such as a single bearing versus time history display, whereby the relative advantages of each type of detection scheme are built into a single display format.
Patents that show attempts to solve the above and other related problems are as follows:
U.S. Pat. No. 5,481,505, issued Jan. 2, 1996, to Donald et al., discloses a method and apparatus for detecting, processing and tracking sonar signals to provide bearing, range and depth information that locates an object in three-dimensional underwater space. An inverse beamformer utilizes signals from a towed horizontal array of hydrophones to estimate a bearing to a possible object. A matched field processor receives measured covariance matrix data based upon signals from the hydrophones and signals from a propagation model. An eight nearest neighbor peak picker provides plane wave peaks in response to output beam levels from the matched processor. A five-dimensional M of N tracker identifies peaks within the specified limit of frequency, bearing change over time, range and depth to specify an object as a target and to display its relative range and depth with respect to the array of hydrophones.
U.S. Pat. No. 5,251,185, issued Oct. 5, 1993, to P. M. Baggenstoss, discloses an improved sonar signal processor and display combining the use of both coherent and incoherent signal processors. In addition to a conventionally used matched filter detection processor, an incoherent signal processor comprising a cross-range energy filter and a down-range energy filter is used. The cross-range energy filter detects objects characterized by a narrow bearing response; whereas the down-range energy filter detects objects characterized by a narrow range response. The detection events resulting from the incoherent signal processor are displayed in a subdued color to prevent distraction from the primary display events and to reduce the false alarm rate by allowing the sonar operator to view events in the context of natural boundaries.
U.S. Pat. No. 5,216,640, issued Jun. 1, 1993, to Donald et al., discloses an apparatus and method for detecting, processing, and tracking sonar signals. Plane wave energy from the sonar signal source is measured at multiple points using an array of plane wave energy receptors. These measurements are processed using an inverse beamformer to generate output beam levels. These output beam levels are then processed using the spectrum normalizer to yield spatially and spectrally normalized output beam levels. The normalized beam levels are then processed using an eight nearest-neighbor peak-picker to provide plane wave peaks. Finally, the plane wave peaks are processed by a three-dimensioned M of N tracker to identify peaks within a specified limit of frequency and angle change over time. The identified peaks may be displaced or recorded for further analysis.
U.S. Pat. No. 5,058,081, issued Oct. 15, 1991, to Gulli et al., discloses a method of formation of channels for a sonar after being sampled at a frequency T=1/4f
0
(where f
0
is the receiving center frequency of the sonar) the signals from the hydrophones of the sonar and having translated them to baseband, the signals thus translated are subsampled with a period T
SE
=kT (wherein k is an integer) substantially equal to 1.25 B, where B is the reception bandwidth of the sonar. A first set of signals is subsampled at identical times to form a frontal sector. Two further sets of signals are subsampled with delays between the signals from two adjacent hydrophones equal to T, which determines two side sectors adjacent to the frontal sector. The subsampled signals are then transmitted serially by the towing cable of the sonar device towed array and are processed in FFT circuits which allow to form in each sector a set of channels covering the sector. This allows to considerably reduce the data transmission rate between the towed portion of the sonar and the portion located in the towing ship.
U.S. Pat. No. 4,935,748, issued Jun. 19, 1990, to Schmidt et al., discloses a blast recorder and method for monitoring and processing vibrations from blasts, and for displaying the results in a nearly real time basis and in a manner which is easily interpreted by a relatively unskilled field worker and corresponds to a form which closely correspond to the real damage causing aspect of the blast than heretofore. The invention operates by receiving seismic energy signals from a blast sensor, processing the energy signals to obtain velocity signals relating to said blast, filtering either the energy signals prior to, or the velocity signals following said processing step, into high and low frequency bands, to obtain high and low band velocity signals, integrating over the period of the blast the high and low band velocity signals to obtain high and low band displacement signals, determining the peak velocity signal in each band, over the period of the blast, and displaying one or all of the peak of the velocity signal determined in the high frequency band, the peak of the velocity signal determined in the low frequency band, and the displacement signal related to the low frequency band.
U.S. Pat. No. 3,713,087, issued Jan. 23, 1973, to Bauer et al., discloses an acoustical detection apparatus for determining the direction of origin of sounds. A first acoustic receiving system having a relatively high uniform sensitivity in a predet
Carter G. Clifford
Struzinski William A.
Kasischke James M.
Nasser Jean-Paul A.
Oglo Michael F.
Pihulic Daniel T.
The United States of America as represented by the Secretary of
LandOfFree
Sonar display system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sonar display system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sonar display system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3183007