Somatostatin antagonists and agonists that act at the SST...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S087000, C546S086000, C546S080000, C546S089000, C514S291000

Reexamination Certificate

active

06720330

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides pharmaceutically active compounds that facilitate secretion of growth hormone (GH) by the anterior pituitary. Growth hormone (also known as somatotropin) acts indirectly to promote skeletal growth in children by stimulating the production of insulin like growth factor-1 from the liver. Growth hormone also stimulates the differentiation of fat cells and chondrocytes (cells that secrete collagen and proteoglycans to form cartilage). In adults, growth hormone is involved in the proper maintenance of connective and muscle tissues.
Growth hormone deficiency may be congenital or acquired. Deficiency in children causes slow skeletal growth that, if not corrected, results in permanent short stature. In older adults, deficiency of growth hormone results in frailty. Additional adult symptoms of GH deficiency may include wrinkled skin and hypoglycemia.
For veterinary application, upregulation of growth hormone is useful to treat frailty in older animals, particularly companion animals. With respect to livestock, upregulation of growth hormone increases growth and performance, even in healthy animals with normal GH levels. Improvements in feed efficiency, milk yield, leanness, meat quality and fertility are of note.
Although direct administration of growth hormone may be effective in certain therapeutic applications, it is difficult in practice. Among other issues, since the half-life of growth hormone in the body is very short, direct administration leads to artificially increased levels in the concentration of circulating GH, which then rapidly drop off. Sustained release, such as by a mechanical pump, has not been optimally set to practice.
The concentration of growth hormone circulating in the body depends on the balance of numerous biochemical pathways, including opposing processes. Compared to the direct administration approach, shifting the balance of these pathways indirectly provides a safer, more reproducible method to affect GH secretion on a sustained basis. Under this approach, since the overall regulatory framework remains intact, secretion rates and circulatory concentrations for GH follow a relatively normal pattern, and adverse fluctuations in both secretion rate and circulating GH concentration are avoided. The present invention provides for therapeutic compounds, and their use, to indirectly elevate growth hormone secretion from the pituitary.
REPORTED DEVELOPMENTS
Growth hormone is released from the anterior pituitary in response to stimulation by growth hormone releasing peptide (GHRP), and growth hormone releasing hormone (GHRH), of hypothalamic origin. However, release of growth hormone via these or other mechanisms is inhibited by somatostatin, and thus the process is closely regulated.
Somatostatin (SRIF) is a cyclic peptide hormone of 14 amino acids (there is also a 28 amino acid form) having numerous endocrine functions which, like many hormones, is cleaved from a larger precursor protein. Somatostatin inhibits the pituitary secretion of growth hormone, the pancreatic secretion of glucagon and insulin, and the secretion of gastrin from the gut. Somatostatin also acts as a neurotransmitter
euromodulator (see S. J. Hocart et al.,
J. Med. Chem.,
41, pp. 1146-1154, 1998 for a general discussion).
The biological effects of somatostatin are apparently all inhibitory in nature, and are elicited upon binding to the surface of a target cell. The receptor is an integral membrane protein (which spans the cell membrane), and is G-protein-coupled. G-protein coupled receptors represent a major class of cell surface receptors. It is believed that upon binding of somatostatin to the receptor, the receptor undergoes a conformational change facilitating its interaction with a G-protein at the cytoplasmic face of the receptor. This facilitates binding or release of GTP/GDP at the G protein, and leads to further activation and signaling events inside the cell. In particular, somatostatin binding at its own G-protein-coupled receptor is negatively coupled to adenylyl cyclase activity, which is necessary for the production of cyclic AMP. Thus, these further signaling events directly oppose mechanisms (for example, as mediated by calcium ions or cyclic AMP) whereby GHRP and GHRH would otherwise trigger extracellular secretion of growth hormone from cytoplasmic storage granules. For a general review thereof, see
The Encyclopedia of Molecular Biology
, J. Kendrew, ed., Blackwell Science, Ltd. 1994, at page 387.
The effects of somatostatin on target cells are mediated by at least 5 classes of receptors (sst1-sst5). Although the receptors may have similar affinity for somatostatin, they are differentially expressed in different tissues, and so positioned, interact, directly or indirectly, with different intracellular signaling components. This tissue specificity of receptor expression accounts in large measure for the different effects of somatostatin in different target cell types. Somatostatin receptors are found, for example, in tissues of the anterior pituitary, other brain tissues, the pancreas, the lung, on lymphocytes, and on mucosa cells of the intestinal tract.
The sst2 type receptor is known to mediate inhibition of growth hormone secretion in the anterior pituitary. This receptor is also reported in 2 forms, proteins sst2A and sst2B, which result from differential splicing of the sst2 gene transcript (M. Vanetti, et al., FEBS Letters, 311, pp.290-294, 1992). The sst2 receptor is also known to mediate inhibition of gastrin and histamine secretion. Additionally, the sst2 receptor is known to mediate inhibition of glucagon release from pancreatic alpha cells.
Although numerous somatostatin agonists have been described (see for example, WO 98/44922, WO 98/45285, and WO 98/44921), the development of useful sst2-linked somatostatin antagonists has lagged behind. Recent reports of such compounds include W. R. Baumbach et al.,
Molecular Pharmacology,
54, pp. 864-873, 1998, and S. J. Hocart et al.,
J. Med. Chem.,
41, pp. 1146-1154, 1998. However, such compounds are short peptides, a class of molecules not often suited for successful use as pharmaceuticals because of their typically short half life in the body. Additional relevant disclosures include WO099/64401 and WO099/64420.
It would be advantageous to provide antagonists of somatostatin activity, effective at the sst2 type receptor, having superior properties as pharmaceuticals, including bioavailability, stability, and the like. The present invention provides a series of antagonist compounds that specifically interfere with the binding of somatostatin to the sst subtype 2 receptors of cells in the mammalian anterior pituitary, and which have additional valuable properties.
SUMMARY OF THE INVENTION
Accordingly, there are provided compounds according to the formula
A—Z—W   (formula I)
or pharmaceutically acceptable salts, solvates or hydrates thereof; wherein A is selected from the groups consisting of:
A′—(CH
2
)
n
—, A′—(CH
2
)
n
SO
2
—, and A′—(CH
2
)
n
CO—, where n is 0 to 4; and
A′ is selected from
(a) (C
6
-C
10
)aryl-, selected from phenyl or naphthyl; or
(b) (C
1
-C
9
)heteroaryl-, selected from the group consisting of furyl-, thienyl-thiazolyl-, pyrazolyl-, isothiazolyl-, oxazolyl-, isoxazolyl-, isoxazolyl-, pyrrolyl-, triazolyl-, tetrazolyl-, imidazolyl-, 1,3,5-oxadiazolyl-, 1,2,4-oxadiazolyl-, 1,2,3-oxadiazolyl-, 1,3,5-thiadiazolyl-, 1,2,3-thiadiazolyl-, 1,2,4-thiadiazolyl-, pyridyl-, pyrimidyl-, pyrazinyl-, pyridazinyl-, 1,2,4-triazinyl-, 1,2,3-triazinyl-, 1,3,5-triazinyl-, pyrazolo[3,4-b]pyridinyl-, cinnolinyl-, pteridinyl-, purinyl-, 6,7-dihydro-5H-[1]pyrindinyl-, benzo[b]thiophenyl-, 5,6,7,8-tetrahydro-quinolin-3-yl, benzoxazolyl-, benzothiazolyl-, benzisothiazolyl-, benzisoxazolyl-, benzimidazolyl-, thianaphthenyl-, isothianaphthenyl-, benzofuranyl-, isobenzofuranyl-, isoindolyl-, indolyl-, indolizinyl-, indazolyl-, isoquinolyl- quinolyl-, phthalazinyl-, quinoxalinyl-, quinazolinyl-, and benzo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Somatostatin antagonists and agonists that act at the SST... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Somatostatin antagonists and agonists that act at the SST..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Somatostatin antagonists and agonists that act at the SST... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.