Solvent released encapsulated yeast

Food or edible material: processes – compositions – and products – Fermentation processes – Of farinaceous cereal or cereal material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S182000, C426S062000, C426S551000, C426S561000, C426S653000

Reexamination Certificate

active

06616954

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the art of food preparation, and, in particular, to the use of yeast in food.
Yeast is a living organism which is sensitive to its surrounding environment. Exposure of yeast to, for example, moisture, can destabilize the yeast.
Producers of dry mix packages for bakery mixes experience the limitations of yeast in their dry mix packages. There is sufficient moisture in the flour and the other components in the dry mix package to eventually destabilize the yeast included in the package. Due to the presence of moisture, the yeast begins to activate and produce carbon dioxide while still in the package mix. As a consequence, when the package mix is ready to be used by the consumer, the level of activity of the yeast is insufficient to produce carbon dioxide required to fully expand the cell structure of the dough. Thus, since the dough does not adequately rise, the resulting baked product is organoleptically inferior to the consumer.
One approach to solve this problem is to have the yeast added directly by the consumer. However, this can lead to a number of inconsistencies, and erratic performance due to consumer mishandling.
Another approach is to package the yeast separately in smaller sachets. Therefore, the yeast is separated from the remaining components of the dry mix package. Nevertheless, this is an expensive alternative due to the high packaging costs for small amounts of yeast per sachet. Furthermore, the cost of ensuring a sachet is deposited into each dry mix package substantially adds to the cost of the package mix.
An alternative method to increase the stability of the dry mix package is to dry all the components of the package, including the flour. However, this approach is not effective since the components of the package will eventually reabsorb moisture, during storage, to a level that is damaging to the yeast.
U.S. Pat. No. 4,719,114 to Percel discloses a process for preserving active dry yeast. The yeast is preserved by applying a coating containing polyethylene glycol having a molecular weight in the range of about 3350 to about 8000. Percel teaches that a benefit of using higher molecular weight polymers (i.e., 3350 to 8000) is abrasion resistance.
PCT Publication No. W095/34292 to Santus describes a micro-organism encapsulated with polyethylene glycol. The encapsulates are used in foodstuffs, such as milk and fruit juices. The coating is enteric, thus resulting in the release of micro-organisms due to an increase in pH.
It is thus an object of the present invention to provide a solvent soluble encapsulated yeast having a polymer coating with a relatively low molecular weight (i.e., less than 3050) which offers abrasion resistance, stability in storage, and an improved manufacturing process as a result of lower viscosity and lower solidification temperature of the encapsulating material, for manufacturing encapsulated yeast composites for use in food compositions and food products.
SUMMARY OF THE INVENTION
The present invention includes an encapsulated yeast composite and compositions thereof, especially food compositions and products therefrom. The present invention also includes a method for preparing food compositions and products using the unique composite.
The encapsulated yeast composite includes a core which contains yeast and a coating which contains a soluble component. The soluble coating dissolves upon contact with a solvent. In a preferred embodiment, the solvent is an aqueous solvent, such as water.
The soluble coating includes polyethylene glycol having a molecular weight not greater than 3050. Preferably, the molecular weight of the polyethylene glycol is from about 1500 to about 3000, e.g., about 2000 in one embodiment.
The yeast useful in the present invention is any dry yeast, including
Saccharomyces cerevisiae
. In a preferred embodiment, the yeast is INSTANT yeast. The minimum amount of yeast present in the composite is about 5% by weight of the composite, preferably about 30%, and more preferably about 50% by weight of the composite. The maximum amount of yeast present in the composite is about 95% by weight of the composite, preferably about 90%, and more preferably about 85% of the composite.
The food composition contains the encapsulated yeast composite. In a preferred embodiment, the food composition is a dry mix package.
The food product includes the composite which is combined with other food ingredients. The combination is subjected to a solvent which releases the yeast. In a preferred embodiment, the addition of a solvent to the combination results in a dough. The dough can be proofed and baked to obtain a food product. Preferably, the food product is a bakery product, and more preferably, a bread product.
As a result of the present invention, yeast is provided which can tolerate storage conditions (e.g., moisture) encountered by food compositions, such as dry mix packages. A low molecular weight polyethylene glycol coating protects the yeast from the environment and provides greater solubility in a solvent without detracting from the abrasion resistance of the coating. A greater solubility for polyethylene glycol allows for quicker release of the yeast, thus resulting in greater carbon dioxide production and improved leavening capacity. Moreover, a lower molecular weight polyethylene glycol exhibits a lower viscosity, enabling the coating to be more rapidly applied at a lower temperature. In addition, the lower weight polyethylene glycol also has a lower solidification temperature. The lower temperatures used during the encapsulation process are less detrimental to the viability of the yeast.
For a better understanding of the present invention, together with other and further advantages, reference is made to the following detailed description, and its scope will be pointed out in the claims.
DETAILED DESCRIPTION OF THE INVENTION
An encapsulated yeast according to the present invention is a composite which includes a core containing yeast and a coating which encapsulates the core. The minimum amount of yeast present in the composite is about 5% by weight of the composite, preferably about 30%, and more preferably about 50% by weight of the composite. The maximum amount of yeast present in the composite is about 95% by weight of the composite, preferably about 90%, and more preferably about 85% of the composite.
The coating for an encapsulated yeast is preferably a soluble coating. In a preferred embodiment, the coating is water soluble. The coating can also contain additives. Typically, the additives can be used to enhance stability of the coating and dispersibility.
The coating completely surrounds the yeast such that the yeast is protected from the surrounding environment until it is released at the appropriate time. The appropriate time useful in the present invention can be determined by controlling the time a solvent is added to the composite.
Solvents useful in the present invention include any solvents which dissolve the coating. Preferably, the solvent is a polar solvent, especially aqueous solvents. An aqueous solvent is a liquid which contains essentially water, e.g., milk. Preferably, the aqueous solvent is water.
The soluble coating can be any coating which dissolves when in contact with a solvent, e.g., an aqueous solvent. Polymers can be part of the soluble coating, such as, for example, polyethylene glycol.
Polyethylene glycol is a polymer which is formed by condensation of ethylene glycol. The general formula for polyethylene glycol is HOCH
2
(CH
2
OCH
2
)
n
CH
2
OH or H(OCH
2
CH
2
)
n
OH. The polyethylene glycol useful in the present invention is any low molecular weight polymer of ethylene glycol where n is any number such that the molecular weight of the polyethylene glycol is less than 3050. In a preferred embodiment, the molecular weight of the polyethylene glycol is from about 1500 to about 3000, and, in an especially preferred embodiment is about 2000.
Yeast useful in the present invention is any dry yeast which generates carbon dioxide

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solvent released encapsulated yeast does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solvent released encapsulated yeast, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solvent released encapsulated yeast will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067021

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.