Solvent and method for extraction of triglyceride rich oil

Food or edible material: processes – compositions – and products – Processes – Extraction utilizing liquid as extracting medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S425000, C426S429000, C252S364000, C554S014000

Reexamination Certificate

active

06800318

ABSTRACT:

FIELD OF INVENTION
The present invention relates to a method and solvent for use in extracting oil from oil bearing materials, preferably a triglyceride rich oil is selectively extracted from the oil bearing material. More preferably, the present invention relates to a solvent, comprised of a hydrocarbon and a fluorocarbon, and a method that will preferably remove an amount of oil comprised of greater than 95% by weight triglycerides and other non-polar constituents from an oil bearing material, such as a soybean material.
BACKGROUND OF INVENTION
Oils, especially oils comprised primarily of triglycerides and other non-polar constituents, are used in a variety of applications including uses as edible and non-edible oils. Edible oils that high in triglycerides are especially desired and are typically used as food ingredients or as medium for frying or cooking foods. Triglyceride rich edible oils are preferred for use because they have a high smoke temperature, meaning they do not readily smoke or burn when heated, making them ideal for frying or cooking, and have a desirable flavor. It should be pointed out that most edible oils sold in grocery stores are primarily comprised of triglycerides. Non-edible oils include technical oils such as lubricating oils and hydraulic fluids and fuel.
There are a variety of sources available for use in extracting oils which are high in triglycerides. Some of the available raw material sources include: soybeans, corn, sunflower, palm, cotton seed, olives, peanuts, linseed, and coconut. Additionally, there are other types of vegetable and animal matter which can be used to extract oil that is high in triglycerides. Regardless of the source of the oil, it is generally preferred that the extracted oil be devoid of unsaponifiable matter, pigments, phospholipids or phosphatides, and odoriferous components. This is especially true if the oil is going to be used for cooking or edible oil purposes. Unfortunately, most known methods for extracting oil from oil bearing materials initially result in an oil which contains these unwanted components. As such, it is often necessary to pass the extracted oil through a number of refining steps to ensure adequate removal of the odoriferous components, phospholipids, and pigments. Additional refining steps, however, are undesirable because additional steps generally raise the cost associated with producing both edible and non-edible oils. Increased energy inputs are required and often more equipment is necessary. For these reasons, it is desired to have a more cost efficient and less energy intensive method which most likely requires fewer steps for removing oils rich in triglycerides from oil bearing materials.
Of particular interest is an oil rich in triglycerides derived or extracted from soybeans. It is known that soybean oils are especially prevalent for use in cooking and, in general, are desired for use as an edible oil. Soybean oils are especially well known for use in frying foods. Before selling soybean oil commercially for use in cooking, it is necessary to ensure that the phospholipid, color, and odoriferous constituents are removed, otherwise consumers will consider the product undesirable for consumption and cooking uses. This is especially true if the oil has a disagreeable smell as a result of the odoriferous compounds. For this reason, it is especially desired to have a more efficient, less energy intensive method for extracting triglyceride rich soybean oil from soybean material.
Traditionally, soybeans and other oil bearing materials have had oils extracted by a general method which includes preparation of the oil bearing material, extraction of the oil from the oil bearing material with an organic solvent, separation of the solvent from the oil, and removal of polar materials, including phospholipids, pigments, odor, and color constituents from the oil. This is generally followed by a solvent neutralization step. It is known that in this general process, the step for removal of the polar materials, such as the phospholipids, pigments, and odoriferous constituents, and the solvent neutralization step can add costs and result in increased energy inputs. What is greatly desired is a method that allows for extraction of a triglyceride rich oil from an oil bearing material, especially soybeans, that does not initially remove the phospholipids, pigments, or odoriferous compounds with the triglyceride rich oil. It is also desired if a solvent neutralization step is not required. In other words, it is greatly desired to have a solvent and/or a method that selectively extracts triglycerides from the oil bearing material and that does not result in the extraction of the odoriferous compounds, color constituents, and phospholipids with the triglycerides.
A number of processes exist for extracting oils from oil bearing material; however, a vast majority of these known methods are disadvantageous for one reason or another. For example, it is well-known in the extraction art to use hexane to extract triglyceride rich oil from oil bearing materials. This, however, suffers from two problems. First, the extracted oil contains a sufficient amount of phospholipids, odoriferous components, and color components so as to warrant additional steps necessary to remove these constituents. Hexanes alone do not selectively extract triglyceride rich oil. This, in turn, increases the amount of energy and number of pieces of equipment required to separate the oil from the oil bearing material and, as such, increases the cost. The second problem is that hexanes are highly flammable and has been known to combust and cause plant explosions. However, the majority of soy oil extraction methods use hexane, because hexanes have a low viscosity and most oil components are miscible in hexane. As such, it is desired to have a method and/or solvent that preferably includes the use of hexane for removing the oil from the oil bearing materials which does not require an additional removal step for the color, odor, and phospholipid constituents, and which is non-flammable or, more particularly, less hazardous to human health.
It is further desired to be able to extract the oil in conditions that are close to ambient. It is even more preferred to be able to separate the oil from the solvent at ambient or near ambient conditions. This is desired because of the lesser energy input required. Currently, many removal processes include a distillation step designed to separate the solvent from the oil. As such, it is especially desired to eliminate or reduce the need for a distillation step from the oil extraction method.
It has been known to use a mixture of solvents, including hydrocarbons and halogenated hydrocarbons, to extract oil from an oil bearing material. It is believed that the known solvent mixtures typically have a higher polarity than the oil. The use of a higher polarity solvent appears to have developed into the preferred way for extracting oils from oil bearing material. In general, it appears that the art has taught away from lowering the polarity of the solvent to produce a solvent having a polarity of about 0 or less than that of the oil. Instead, the art, as observed by currently practiced methods, has apparently taught that the highly non-polar solvents are not suitable for extracting non-polar triglycerides.
In U.S. Pat. No. 4,008,210, invented by Steele, et al., a potential use of a mixed solvent is disclosed. Specifically, the method disclosed in the Steele patent relates to the formation of a proteinaceous material that is devoid of oil components, with the method unrelated to the selective extraction of triglycerides. Importantly, the method does not disclose how to selectively extract a triglyceride rich oil from an oil bearing composition. Further, this patent does not disclose the specific requirements for a solvent that will selectively extract triglycerides from oil bearing materials at near ambient conditions.
Thus, it is desired to have a substantially safe, nonhazardous solvent and/or method for selectively extr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solvent and method for extraction of triglyceride rich oil does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solvent and method for extraction of triglyceride rich oil, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solvent and method for extraction of triglyceride rich oil will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3308104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.