Food or edible material: processes – compositions – and products – Processes – Heating above ambient temperature
Reexamination Certificate
2001-03-08
2002-06-04
Weier, Anthony J. (Department: 1761)
Food or edible material: processes, compositions, and products
Processes
Heating above ambient temperature
C426S594000
Reexamination Certificate
active
06399131
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a soluble coffee product having intensified flavor and color and to methods of heat treating a coffee extract to intensify the flavor and color for use in soluble coffee products without deleteriously altering the flavor of the coffee.
BACKGROUND OF THE INVENTION
Soluble coffee products, often referred to as “instant coffee”, are prepared from aqueous extracts of roasted and ground coffee. The products are generally in the form of spray-dried or freeze-dried particulate solids.
The process of making soluble coffee causes loss of coffee aroma and flavor relative to the roasted and ground coffee from which the soluble coffee was prepared. Various methods have been developed to increase the aroma and yield of soluble coffee. For example, coffee aroma recovered during coffee grinding is often added to soluble coffee products. It is also known that the yield of conventional soluble coffee (e.g., spray-dried powder having a moisture content of about 2-3% by weight) can be increased by heating instant coffee at a temperature sufficiently high to melt the coffee and to cause pyrolysis of carbohydrates resulting in generation of carbon dioxide. This method is described in International Patent Application No. PCT/US93/10405 published May 26, 1994 as No. WO 94/10852 (hereinafter WO '852). Generation of carbon dioxide in the melt causes the melt to foam. The foam is then solidified by cooling and comminuted to form a foamed particulate soluble coffee product.
The heating process causes significant weight loss, on the order of about 7-10% by weight in addition to loss of water. It is reported in WO '852 that the weight of the foamed product needed to prepare a serving of coffee beverage is reduced by 30-50% relative to the amount of conventional soluble coffee products, such as spray dried coffee powder, required to prepare a serving of the same size. However, quality of the beverage is not reported.
The method of WO-852 potentially has several drawbacks. It involves a significant number of new unit operations which must be added to an instant coffee manufacturing process. These would include coffee powder handling, coffee powder heating such as by extrusion, coffee melt handling, melt cooling, solidified melt grinding and coffee powder sizing. Potentially, heating of dried coffee extract powder could produce flavor consistency problems especially if the coffee melt in the extruder is not completely and continuously wiped from the walls and screws producing burning of some of the coffee.
SUMMARY OF THE INVENTION
The invention is directed to a method of providing a soluble coffee having intensified flavor and color in which a coffee extract is heated at a temperature and for a time selected to optimize the flavor and color of the coffee extract. The extract is then cooled and may be dried to form a soluble coffee powder which may be sold as is as an instant coffee, combined with traditional soluble coffee, incorporated into a liquid coffee product or combined with sugar, creamer, flavors, etc. to form a soluble coffee product. Alternatively, the intensified extract may be directly incorporated into a ready to drink or concentrated liquid coffee product without undergoing a drying step.
The present invention may easily be incorporated into a standard instant coffee manufacturing process. Coffee extract which has exited the percolators is collected and/or first concentrated or evaporated and then preferably treated in a single piece of equipment, typically a plug flow reactor, which will heat the extract under pressure to effect flavor and color intensification and subsequently cool the intensified extract.
DESCRIPTION OF PREFERRED EMBODIMENTS
The coffee extract utilized as the starting material in the present invention is substantially free of roast and ground coffee particles and may be derived from any bean type such as Robusta or Arabica, decaffeinated or caffeine-containing and should contain within the range of 5-70% soluble coffee solids, preferably 30-60%. The extract may be prepared by conventional percolation methods. Such conventional methods are, for example, described in U.S. Pat. No. 2,915,403 which is herein incorporated by reference. Typically, a countercurrent extraction method is utilized wherein water is passed through a packed bed of unextracted roast and ground coffee at a temperature of from about 80° C. to 120° C. in a percolation train of two to six percolators. The extract is recovered from the least spent percolation column and any roast and ground coffee fines are removed by centrifugation. The separation produces a coffee extract which is substantially free of roast and ground coffee particles. The extract yield is typically over 50%.
In general, heating the coffee extract to a temperature below about 100° C. is insufficient to significantly intensify coffee flavor and color, while heating the coffee extract to a temperature above about 170° C. will cause sedimentation in the coffee extract, which results in a loss of color yield and flavor quality. The time sufficient to significantly increase flavor and/or color intensity is dependent on the coffee extract temperature, with longer time being required at lower temperature and less time required at high temperature. The temperatures necessary to intensify the flavor and color of the coffee extract will typically range from 110° C. to 170° C. for a treatment time ranging from about 15 seconds to about 30 minutes. In order to achieve the required temperature, the coffee extract must be heated under elevated pressure of 6 to 100 psig. The extract is heated without increasing the coffee solids content of the extract. Preferably, the coffee solids content remains constant.
The extent of flavor intensity increase is calculated by dividing the additional amount of coffee which would be required to prepare a coffee beverage of a desired flavor intensity using the same instant coffee that was employed to make the heat treated product by the amount of coffee required to prepare a coffee beverage of the same flavor intensity and color using the instant coffee after heat treatment in accordance with the present invention. For example, if dissolving 1.955 grams of untreated instant coffee has the same flavor and color intensity as 1.700 grams of treated coffee, the extent of flavor intensity has been increased by (1.955−1.700)/1.700=15%. The extent of flavor intensity is preferably increased by at least 5% and more preferably by at least 10% and most preferably 15%.
In accordance with a preferred embodiment of the invention, concentrated coffee extract, i.e., at about 30-60% coffee solids, is heated at a temperature and for a time sufficient to intensify the flavor of the coffee extract. The use of a more concentrated extract as the starting material has economic benefit. The extract is then dried, typically by spray-drying or freeze-drying to form a soluble coffee. Particle size may be adjusted by conventional agglomeration techniques. Particle size is preferably the same as that of conventional soluble coffee, generally not more than 5000 &mgr;m. Average particle size is preferably within the range of 250-3000 &mgr;m.
In general, heating the coffee extract should not exceed a temperature of 170° C. as this tends to result in the formation of sediment. If undesirable sedimentation occurs, the extract and resultant soluble coffee loses both flavor and color and results in negative consumer preference. Heating of the coffee extract may be effected in any manner which allows the extract to be heated up to a temperature of less than 170° C., typically from 110° C. to 170° C. It is preferred to carry out the heating step continuously and not exceed 160° C. In a preferred method, the coffee extract is heated using a plug flow reactor. A plug flow reactor is preferred over a batch reactor as the plug flow reactor allows the coffee extract to be heated and cooled fairly rapidly. The time needed to achieve the desired flavor and color intensity varies with
Langdon Joanne Marie
Turek Evan Joel
Wiseman Gregory Aaron
Zeller Bary Lyn
Kraft Foods Holdings, Inc.
Larson & Taylor PLC
Weier Anthony J.
LandOfFree
Soluble coffee having intensified flavor and color and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Soluble coffee having intensified flavor and color and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soluble coffee having intensified flavor and color and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2914762