Earth boring – well treating – and oil field chemistry – Earth boring – Contains organic component
Reexamination Certificate
2001-03-28
2004-05-11
Tucker, Philip C. (Department: 1712)
Earth boring, well treating, and oil field chemistry
Earth boring
Contains organic component
C507S203000, C507S904000, C507S906000, C507S108000, C507S207000, C507S140000, C507S145000, C507S267000, C507S269000, C507S277000, C516S022000, C166S305100
Reexamination Certificate
active
06734144
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a solids-stabilized water-in-oil emulsion used for enhanced crude oil recovery. More specifically, the stability of the solids-stabilized water-in-oil emulsion is enhanced by the method of pretreating the oil prior to emulsification. The pretreatment step can be accomplished by adding dilute acid to the oil, adding a lignosulfonate additive to the oil, sulfonating the oil, thermally treating the oil in an inert environment, thermally oxidizing the oil, and combinations thereof. The improved emulsion may be used either as a drive fluid to displace hydrocarbons from a subterranean formation or as a barrier fluid for diverting the flow of hydrocarbons in the formation.
BACKGROUND OF THE INVENTION
It is well known that a significant percentage of oil remains in a subterranean formation after the costs of primary production rise to such an extent that further oil recovery is cost ineffective. Typically, only one-fifth to one-third of the original oil in place is recovered during primary production. At this point, a number of enhanced oil recovery (EOR) procedures can be used to further recover the oil in a cost-effective manner. These procedures are based on re-pressuring or maintaining oil pressure and/or mobility.
For example, waterflooding of a reservoir is a typical method used in the industry to increase the amount of oil recovered from a subterranean formation. Waterflooding involves simply injecting water into a reservoir, typically through an injection well. The water serves to displace the oil in the reservoir to a production well. However, when waterflooding is applied to displace viscous heavy oil from a formation, the process is inefficient because the oil mobility is much less than the water mobility. The water quickly channels through the formation to the producing well, bypassing most of the oil and leaving it unrecovered. For example, in Saskatchewan, Canada, primary production crude has been reported to be only about 2 to 8% of the original oil in place, with waterflooding yielding only another 2 to 5% of that oil in place. Consequently, there is a need to either make the water more viscous, or use another drive fluid that will not channel through the oil. Because of the large volumes of drive fluid needed, it must be inexpensive and stable under formation flow conditions. Oil displacement is most efficient when the mobility of the drive fluid is significantly less than the mobility of the oil, so the greatest need is for a method of generating a low-mobility drive fluid in a cost-effective manner.
Oil recovery can also be affected by extreme variations in rock permeability, such as when high-permeability “thief zones” between injection wells and production wells allow most of the injected drive fluid to channel quickly to the production wells, leaving oil in other zones relatively unrecovered. A need exists for a low-cost fluid that can be injected into such thief zones (from either injection wells or production wells) to reduce fluid mobility, thus diverting pressure energy into displacing oil from adjacent lower-permeability zones.
In certain formations, oil recovery can be reduced by coning of either gas downward or water upward to the interval where oil is being produced. Therefore, a need exists for a low-cost injectant that can be used to establish a horizontal “pad” of low mobility fluid to serve as a vertical barrier between the oil producing zone and the zone where coning is originating. Such low mobility fluid would retard vertical coning of gas or water, thereby improving oil production.
For moderately viscous oils—i.e., those having viscosities of approximately 20-100 centipoise (cP)—water-soluble polymers such as polyacrylamides or xanthan gum have been used to increase the viscosity of the water injected to displace oil from the formation. For example, polyacrylamide was added to water used to waterflood a 24 cP oil in the Sleepy Hollow Field, Nebr. Polyacrylamide was also used to viscosity water used to flood a 40 cP oil in the Chateaurenard Field, France. With this process, the polymer is dissolved in the water, increasing its viscosity.
While water-soluble polymers can be used to achieve a favorable mobility waterflood for low to moderately viscous oils, usually they cannot economically be applied to achieving a favorable mobility displacement of more viscous oils—i.e., those having viscosities of approximately 100 cP or higher. These oils are so viscous that the amount of polymer needed to achieve a favorable mobility ratio would usually be uneconomic. Further, as known to those skilled in the art, polymer dissolved in water often is desorbed from the drive water onto surfaces of the formation rock, entrapping it and rendering it ineffective for viscosifying the water. This leads to loss of mobility control, poor oil recovery, and high polymer costs. For these reasons, use of polymer floods to recover oils having viscosities in excess of 100 cP is not usually technically or economically feasible. Also, performance of many polymers is adversely affected by levels of dissolved ions typically found in formations, placing limitations on their use and/or effectiveness.
Water and oil macroemulsions have been proposed as a method for producing viscous drive fluids that can maintain effective mobility control while displacing moderately viscous oils. For example, water-in-oil and oil-in-water macroemulsions have been evaluated as drive fluids to improve oil recovery of viscous oils. Such emulsions have been created by addition of sodium hydroxide to acidic crude oils from Canada and Venezuela. The emulsions were stabilized by soap films created by saponification of acidic hydrocarbon components in the crude oil by sodium hydroxide. These soap films reduced the oil/water interfacial tension, acting as surfactants to stabilize the water-in-oil emulsion. It is well known, therefore, that the stability of such emulsions substantially depends on the use of sodium hydroxide (i.e., caustic) for producing a soap film to reduce the oil/water interfacial tension.
Various studies on the use of caustic for producing such emulsions have demonstrated technical feasibility. However, the practical application of this process for recovering oil has been limited by the high cost of the caustic, likely adsorption of the soap films onto the formation rock leading to gradual breakdown of the emulsion, and the sensitivity of the emulsion viscosity to minor changes in water salinity and water content. For example, because most formations contain water with many dissolved solids, emulsions requiring fresh or distilled water often fail to achieve design potential because such low-salinity conditions are difficult to achieve and maintain within the actual formation. Ionic species can be dissolved from the rock and the injected fresh water can mix with higher-salinity resident water, causing breakdown of the low-tension stabilized emulsion.
Various methods have been used to selectively reduce the permeability of high-permeability “thief” zones in a process generally referred to as “profile modification.” Typical agents that have been injected into the reservoir to accomplish a reduction in permeability of contacted zones include polymer gels or cross-linked aldehydes. Polymer gels are formed by crosslinking polymers such as polyacrylamide, xanthan, vinyl polymers, or lignosulfonates. Such gels are injected into the formation where crosslinking reactions cause the gels to become relatively rigid, thus reducing permeability to flow through the treated zones.
In most applications of these processes, the region of the formation that is affected by the treatment is restricted to near the wellbore because of cost and the reaction time of the gelling agents. Once the treatments are in place, the gels are relatively immobile. This can be a disadvantage because the drive fluid (for instance, water in a waterflood) eventually finds a path around the immobile gel, reducing its effectiveness. Better performance should be expected if the
Bragg James R.
Brons Cornelius H.
Dobson Monte K.
Elspass Chester W.
Huang John S.
Collins Doug
ExxonMobil Upstream Research Company
Tucker Philip C.
Weo Phillip
LandOfFree
Solids-stabilized water-in-oil emulsion and method for using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Solids-stabilized water-in-oil emulsion and method for using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solids-stabilized water-in-oil emulsion and method for using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3265293