Solid stranding flextube unit

Optical waveguides – Optical transmission cable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S102000, C385S109000, C385S111000, C385S113000

Reexamination Certificate

active

06584251

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention is directed to a method and apparatus for manufacturing optical cables and, in particular, optical cables which include flextubes having optical-fibers therein.
With the advent of local area networks and the relative broadband capabilities of fiber optic links, it has become commonplace for new communication systems to include fiber-optic capabilities. Communication cables employing optical fibers—optical cables—are widely used in the telecommunications industry. In particular, multifiber optical cables are widely used for long distance telephone communications, interexchange telephone applications, and other telephony and data transmission applications. Optical cables are also being incorporated into cable television networks in place of more traditional coaxial cables. Optical cables may permit long distances between signal repeaters or eliminate the need for such repeaters altogether. In addition, optical fibers offer extremely wide bandwidths and low noise operation.
2. Related Art
In the use of optical fibers, optical cables are provided for physical protection of the fibers in view of the fragile nature of the glass optical fibers. An optical cable may contain many optical fibers which must be identified and manipulated without disturbing other optical fibers within the optical cable. Therefore, optical cables may have various internal structures. The structure families which are currently being used are tight tube, monotube, slotted core, and loose tube.
In the tight buffer tube construction, protective layers are applied in direct contact with each optical fiber so there is no fiber overlength. In such a tight buffered construction, each optical fiber has one or more completely encapsulating layers in order to provide mechanical protection. The protective layers may be made of thermoplastic or other suitable materials. The protective layers typically have material properties which give the buffered fiber good mechanical and thermal performance. The value of cable tensile elongation for the buffered fiber is typically less than 0.15% in order to provide low attenuation increase at low temperatures.
In the monotube structure, all of the optical fibers are housed in a single, centrally located, gel filled, oversized, thermoplastic, buffer tube. The optical fibers may be loosely configured, grouped in bundles wrapped by binders, or held in a matrix by ribbons. The hollow buffer tube is typically filled with a thixotropic gel which blocks water penetration, but allows for fiber movement during cable expansion or contraction. A precise amount of fiber overlength within the buffer tube is required in order for the fibers to maintain a virtual stress-free condition during cable expansion. The amount of overlength is typically within 0.1-0.2% of the value for the amount of cable tensile elongation.
The slotted core structure has optical fibers precisely placed in gel filled channels or slots. The channels are symmetrical and form a helical path along the longitudinal axis of the cable. A strength member is located in the center of the slotted core cable structure. That is, in the slotted core construction of optical cable, a profile member is extruded around a central strength member made of metallic or dielectric material. A plurality of slots or grooves which follow a helical or reversing helical path are located on the outer surface of the thermoplastic profile member. One or more optical fibers lay in the slots in a virtual stress-free condition. The optical fibers may be loosely configured, grouped in bundles wrapped with binders, or held in a ribbon matrix.
Finally, in a loose tube or flextube structure, several buffer tubes containing optical fibers are stranded around a central strength member. The buffer tubes are then typically bound together with a separate binder before being enclosed within a common sheath. With respect to identifying and manipulating the optical fibers without disturbing or damaging other optical fibers within a cable, the loose tube or flextube structure offers advantages over the monotube. A single buffer tube may be accessed in the loose tube or flextube structure while the remainder of fibers within other buffer tubes are undisturbed. In contrast, entry into the single central monotube is likely to increase the risk of damaging adjacent fibers because all of the fibers are contained within the single monotube.
Loose tubes include extruded cylindrical tubes—called buffer tubes—which enclose optical fibers in a cable. The optical fibers enclosed within a loose tube may be in the form of single optical fibers, optical-fiber ribbons, or any other configuration of optical fibers, which are simply referred to hereinafter as optical fibers for convenience. The buffer tubes serve many purposes, for example: providing physical protection to the optical fibers; protecting the optical fibers from contaminants; containing water blocking materials; isolation of the optical fibers into groups; strengthening the cable to resist crushing forces; and providing room for optical fibers to move when the cable is bent and when tension is applied to the cable.
In conventional methods, individual loose tubes are first formed, as in a buffering process, and they are then stored as an intermediate product, for example on a plate or drum. A plurality of these loose tubes are then stranded together—in a separate stranding process which often takes place in a different location—to form an optical-fiber cable, or loose tube unit. An example of this type of method is disclosed in U.S. Pat. Nos. 5,938,987 and 4,171,609, wherein the former discloses a method by which individual loose tubes are formed, i.e., a buffering step, and the latter discloses a method by which individual preformed loose tubes are stranded together, i.e., a separate stranding step. However, winding the loose tubes onto a drum or depositing the loose tubes represents additional work outlay and cost. Further cost is associated with storage and transportation of the individual loose tubes to the stranding location.
U.S. Pat. No. 5,283,014 attempts to solve the problems of using separate process lines and/or locations to first form individual loose tubes (buffering) and then strand them together. This patent consecutively disposes buffering and stranding lines so that individual loose tubes are formed, are cooled so as to solidify, and are then stranded together along one process line, thereby avoiding storage and transportation costs involved in other conventional methods. However, the buffering and stranding processes are still separate and, therefore, this process still suffers drawbacks associated with separate buffering and stranding processes, such as high cooling costs and low line speeds as it completely cools the loose tubes before it strands them together. Further, the loose tubes are bound together with a separate binder before being enclosed within a common sheath, thereby adding process time as well as expense.
Flextubes are similar to loose tubes in that they contain a supporting sheath which surrounds optical fibers in a cable. The optical fibers enclosed within a flextube may be in the form of single optical fibers, optical-fiber ribbons, or any other configuration of optical fibers, simply referred to hereinafter as optical fibers for convenience. The supporting sheaths of flextubes serve many purposes, for example: providing physical protection to the optical fibers; protecting the optical fibers from contaminants; containing water blocking materials; isolation of the optical fibers into groups; and strengthening the cable to resist crushing forces.
Although flextubes are similar to loose tubes, they have several differences. In particular, flextubes for a given number of optical fibers have an outside diameter which is smaller than that for a loose tube having the same number of optical fibers. In other words, the supporting sheath of a flextube lies more tightly around the optical fibers than does a buffer tube of a loose tube.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solid stranding flextube unit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solid stranding flextube unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solid stranding flextube unit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3110305

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.