Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure – Active layer of indirect band gap semiconductor
Reexamination Certificate
2006-10-17
2006-10-17
Louie, Wai-Sing (Department: 2814)
Active solid-state devices (e.g., transistors, solid-state diode
Incoherent light emitter structure
Active layer of indirect band gap semiconductor
C257S099000, C257S101000, C257S103000
Reexamination Certificate
active
07122842
ABSTRACT:
A light emitting assembly comprising a solid state device coupleable with a power supply constructed and arranged to power the solid state device to emit from the solid state device. A series of rare-earth doped silicon and/or silicon carbide nanocrystals that are either combined in a single layer or in individual layers that produce the required Red, Green, and Blue (RGB) emission to form a white light.
REFERENCES:
patent: 4967251 (1990-10-01), Tanaka et al.
patent: 5422907 (1995-06-01), Bhargava
patent: 5434878 (1995-07-01), Lawandy
patent: 5607876 (1997-03-01), Biegelsen et al.
patent: 5637258 (1997-06-01), Goldburt et al.
patent: 5667905 (1997-09-01), Campisano et al.
patent: 6255669 (2001-07-01), Birkhahn et al.
patent: 6294401 (2001-09-01), Jacobson et al.
patent: 6614824 (2003-09-01), Tsuda et al.
patent: 6881977 (2005-04-01), Lin
patent: 2002/0017657 (2002-02-01), Coffa et al.
patent: 2002/0048289 (2002-04-01), Atanackovic et al.
patent: 2002/0070121 (2002-06-01), Nayfch et al.
patent: 2002/0074565 (2002-06-01), Flagan et al.
patent: 2002/0163003 (2002-08-01), Dal Negro et al.
patent: 2003/0034486 (2003-02-01), Korgel
patent: 2004/0183087 (2004-09-01), Gardner
patent: 2004/0252738 (2004-12-01), Hill
patent: 101 04 193 (2002-08-01), None
patent: WO 02/061815 (2002-08-01), None
patent: 0 650 200 (1995-04-01), None
patent: 1 134 799 (2001-09-01), None
patent: 2001 203382 (2001-07-01), None
patent: 2061815 (2002-08-01), None
Fuji, M. et al., 1.54 μm Photoluminescence of Er3+Doped Into SiO2Films Containing Si Nanocrystals: Evidence for Energy Transfer From Si Nanocrystals to Er3+.Applied Physics Letters,American Institute of Physics vol. 71, Sep. 1, 1997. New York, NY United States of America. pp. 1198-1200. ISSN: 0003-6951.
Orlov, L.K. et al., Comparitive Analysis of Light Emmiting Properties of Si:Er and Ge/Si1—xGexEpitaxial Structures Obtained by MBE Method.Gettering and Defect Engineering in Semiconductor Technology, Solid State Phenomena(FORMERLY Part B of Diffusion and Defect Data [0377-6883]). vol. 69 unit 70, 1999, pp. 377-382. ISSN:1012-0394.
Shin, J.H. et al., Controlling the Quantum Effects and Erbium-Carrier Interaction Using Si/SiO2Superlattices.Proceedings of the SPIE.vol. 4282, Jan. 1, 2001. Bellingham, VA United States of America, pp. 142-152.
Yun, F. et al., Room Temperature Single-Electron Narrow-Channel Memory with Siliconnanodots Embedded in SiO2Matrix.Japanese Journal of Applied Physics.Publication Office Japanese Journal of Applied Physics. vol. 39, No. 8A Part II. Aug. 1, 2000. Tokyo, Japan. pp. L792-L795.
Giorgia Franzó, et al, Er3+Ions—Si Nanocrystals Interactions and Their Effects on the Luminescence Properties; Applied Physics Letters, vol. 76, No. 16, Apr. 17, 2000, pp. 2167-2169.
Se-Young Seo, and Jung H. Shin, Exciton-Erbium Coupling and the Excitation Dynamics of Er3+in Erbium-Doped Silicon-Rich Silicon Oxide; Applied Physics Letters, vol. 78, No. 18, Apr. 30, 2001, pp. 2709-2711.
Jung H. Shin, et al., Photoluminescence Excitation Spectroscopy of Erbium-Doped Silicon-Rich Silicon Oxide; Applied Physics Letters, vol. 76, No. 15, Apr. 10, 2000, pp. 1999-2001.
F. Iacona, et al., Electroluminescence at 1.54 μm in Er-Doped Si Nanocluster-Based Devices; Applied Physics Letters, vol. 81, No. 17, Oct. 21, 2002, pp. 3242-3244.
Minoru Fujii, et al., Photoluminescence from SiO2Films Containing Si Nanocrystals and Er: Effects of Nanocrystalline Size on the Photoluminescence Efficiency of Er3+; Journal of Applied Physics, vol. 84, No. 8, Oct. 15, 1998, pp. 4525-4531.
A.J. Kenyon, et al., Luminescence from Erbium-Doped Silicon Nanocrystals in Silica: Excitation Mechanisms; Journal of Applied Physics, vol. 91, No. 1, Jan. 1, 2002, pp. 367-374.
J. De la Torre, et al., Optical and Electrical Transport Mechanisms in Si-Nanocrystal-Based LEDs; Elsevier Science B.V., Physica E, 2002, pp. 1-3.
Jung H. Shin, et al., Composition Dependence of Room Temperature 1.54 μm Er3+Luminescence from Erbium-Doped Silicon: Oxygen Thin Films Deposited by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition; Applied Physics Letters, vol. 72, No. 9, Mar. 2, 1998, pp. 1092-1094.
P.G. Kik, et al., Strong Exciton-Erbium Coupling in Si Nanocrystal-Doped SiO2; Applied Physics Lettters, vol. 76, No. 17, Apr. 24, 2000, pp. 2325-2327.
G. Franzó, et al., Electroluminescence of Silicon Nanocrystals in MOS Structures; Appl. Phys. A, Materials Science & Processing, 74, (2002), pp. 1-5.
A. Irrera, et al., Excitation and De-Excitation Properties of Silicon Quantrum Dots Under Electrical Pumping; Applied Physics Letters, vol. 81, No. 10, Sep. 2, 2002, pp. 1866-1868.
P.S. Andry, et al., Growth of Er-Doped Silicon Using Metalorganics by Plasma-Enhanced Chemical Vapor Deposition; J. Appl. Phys. 80 (I), Jul. 1, 1996, pp. 551-558.
Kei Watanabe, et al., Resonant Excitation of Er3+By the Energy Transfer from Si Nanocrystals; Journal of Applied Physics, vol. 90, No. 9, Nov. 1, 2001, pp. 4761-4767.
J. De la Torre, et al., Optical Properties of Silicon Nanocrystal LEDs; Elsevier Science B.V., Physica E, 2002, pp. 326-330.
A. Nakajima, et al. Microsctructure and Optical Absorption Properties OS Si Nanocrystals Fabricated with Low-Pressure Chemical-Vapor Deposition; J. Appl. Phys., vol. 80, No. 7, Oct. 1, 1996, pp. 4006-4011.
Jeong Sook Ha, et al., Er3+Photoluminescence from Er-Doped Amorphous SiOxFilms Prepared by Pulsed Laser Deposition at Room Temperature: The Effects of Oxygen Concentration; Applied Physics Letters, vol. 82, No. 20, May 19, 2003, pp. 3436-3438.
Jung H. Shin, et al., Effect of Hydrogenation on Room-Temperature 1.54 μm Er3+Photoluminescent Properties of Erbium-Doped Silicon-Rich Silicon Oxide; Applied Physics Letters, vol. 73, No. 25, Dec. 21, 1998, pp. 3647-3649.
T.G. Kim, et al., Controlling the Formation of Luminescent Si Nanocrystals in Plasma-Enhanced Chemical Vapor Deposited Silicon-Rich Silicon Oxide Through Ion Irradiation; Journal of Applied Physics, vol. 91, No. 5, Mar. 1, 2002, pp. 3236-3242.
M. Li, et al. Ellipsometry Investigation of Nucleation and Growth of Electron Cyclotron Resonance Plasma Deposited Silicon Films; J. Vac. Sci. Technol. A 11(4) Jul./Aug. 1993, pp. 1686-1691.
H.S. Bac, et al., Electroluminescence Mechanism in SiOxLayers Containing Radiative Centers; Journal of Applied Physics, vol. 91, No. 7, Apr. 1, 2002, pp. 4078-4081.
Giorgia Franzó, et al., Enhanced Rare Earth Luminescence in Silicon Nanocrystals; Materials Science and Engineering B69-70, 2000, pp. 335-339.
Rozo, C. et al., Spectroscopic Study of Rare Earth Doped Nano-Crystalline Silicon in SIO2 Films.Quantum Confined Semiconductor Nanostructures. Symposium(Mater. Res. Soc. Symposium Proceedingsvol. 737) Mater. Res. Soc Warrendale, Pa, USA, 2003. pp. 517-522, XP 002310621. ISBN:1-55899-674-5.
Fujii, Minoru et al., Excitation of Intra-4ƒShell Luminescence of Yb3+by Energy Transfer from Si Nanocrystals.Applied Physics Letters.American Institute of Physics. New York, USA. vol. 73, No. 21. Nov. 23, 1998, pp. 3108-3110, XP 012021485. ISSN: 0003-6951.
Pacifici, D. et al., Erbium-Doped Si Nanocrystals: Optical Properties and Electroluminescenct Devices.Physica E. Elsevier netherlands,vol. 16, No. 3-4, Mar. 2003. pp. 331-340, XP 002310622. ISSN: 1386-9477.
Seo, Se-Young et al., Intense Blue-White Luminescnece from Carbon-Doped Silicon-Rich Silicon Oxide.Applioed Physics Letters.vol. 84, No. 5. Feb. 2004. pp. 717-719.
Seo, Se-Young et al., Enhancement of the Green, Visible Tb3+Luminescence from Tb-Doped Silicon-Rich Silicon Oxide by C Co-Doping.Applied Physics Letters.vol. 84, No. 22. May 2004. pp. 4379-4381.
Allen Dyer Doppelt Milbrath & Gilchrist, P.A.
Group IV Semiconductor Inc.
Louie Wai-Sing
LandOfFree
Solid state white light emitter and display using same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Solid state white light emitter and display using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solid state white light emitter and display using same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3660513