Solid phase synthesis

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S025310, C536S025330, C536S025340, C536S027600, C536S027800, C536S027810, C536S028500, C536S028530, C536S028540, C556S404000, C556S407000, C556S425000

Reexamination Certificate

active

06646118

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a support system for solid phase synthesis of oligomers, such as oligonucleotides Furthermore, the invention relates to a method for synthesis of oligonucleotides on a solid support.
BACKGROUND OF THE INVENTION
Oligonucleotides are polymers built up by polycondensation of ribonucleoside (RNA) or deoxyribonucleoside (DNA) phosphates.
Oligonucleotides can be assembled by repetitive addition of nucleotide monomers using solid-phase methods. Since the introduction of solid-phase synthesis [R. B. Merrifield, J. Am. Chem. Soc. 85 (1963) 2149], the following requirements have been worked out: (1) The solid support must be insoluble and preferably unswellable in the solvent used. (2) Functional groups on the solid support must allow covalent binding of the first nucleoside in a reproducible manner. (3) The solid support must be chemically inert to all reagents used during synthesis and deprotection. The most commonly used supports are controlled pore glass beads (CPG), silica, or polystyrene beads.
Below the synthesis cycle of the commonly used phosphoramidite method is described:
1. Deprotection of the 5′-hydroxyl group in order to generate the parent hydroxyl compounds. This is normally done by treatment of the support with di- or trichloroacetic acid in an organic solvent (for removal of protecting groups).
2. The support is washed in order to remove traces of acid.
3. The 5′-hydroxyl group is reacted with the 3′-phosphoramidite moiety of a properly protected incoming nucleotide (A, C, G or T) in the presence of an activator (e.g. tetrazole) to form a 3′-5′-phosphite triester.
4. Excess reagents are removed by washing with an appropriate solvent.
5. Unreacted 5′-hydroxyl groups are blocked as acetates (capping).
6. The capping reagent is removed by washing.
7. The phosphite triester is then oxidated to the corresponding phosphate triester. This is normally done by the action of aqueous iodine.
8. The oxidation reagents are removed by washing.
The process is repeated until the desired oligonucleotide sequence has been synthesized. After synthesis, all protecting groups are removed and the oligonucleotide is cleaved from the solid support.
In the synthesis, defective oligonucleotides are produced as a consequence of several effects, prominently premature termination of synthesis, followed by capping, which results in 5′ truncated molecules, and depurination during the synthetic cycles that is followed by strand scission during deprotection. Recently, attention has also been directed at the appearance of shorter, internally deleted products—so called n−1 and n−2 fragments [Temsamani et al, (1995), Nucleic Acids Research 23(11), 1841-1844]; [Fearon et al, (1995) Nucleic acids Res., 23(14), 2754-2761].
The need for pure oligonucleotides is exemplified by the requirement for high quality products in antisense therapy [Gelfi et al, (1996), Antisense and Nucleic Acid Drug Development, 6, 47-53], in routine diagnostics applications, or for physicochemical and structural studies [Agback et al, (1994) Nucleic Acids Res, 22(8), 1404-12]. Also in molecular cloning impure oligonucleotides frequently reduce efficiency and complicate interpretation of results [McClain et al, (1986) Nucleic Acids Res. 14(16), 6770]; [Nassal, (1988) Gene, 66(2), 279-94].
Preparative gel electrophoresis provides the best resolution for purification of oligonucleotides. The method is however laborious, often leading to considerable loss of material, and it is poorly suited for automation and scale-up.
Chromatographic separation can solve some of these problems, offering a potential for scale-up with minimal losses and using fully automatized instruments. These positive aspects are off-set by the rather poor resolving power of most chromatographic systems. As a partial solution to this problem chromatographic separation of oligonucleotides labeled with affinity tags has been used. The commonly used trityl-on oligonucleotide separation on reversed-phase columns, or capture of 5′-thiol labelled or biotinylated oligonucleotides on respective thiol-affinity [Bannwarth et al, (1990), Helv. Chim. Acta, 73, 1139-1147] or avidin columns [Olejnik et al, (1996), 24(2), 361-366] offer the possibility to isolate fragments with intact 5′-ends. However, the 5′ part of depurinated molecules notoriously contaminate oligonucleotides purified by this method.
A mild basic system has been proposed for partial deprotection and cleavage of apurinic-sites with the oligonucleotides still bound to the solid support. In this manner the 5′ ends of depurinated molecules can be discarded before the oligonucleotides are released from the support, followed by isolation of molecules with intact 5′ ends [Horn et al, (1988), Nucleic Acids Res, 16(24), 11559-71]. In practice, this strategy was accompanied by a substantial loss of products, due to inadvertent release of oligonucleotides during cleavage of depurinated sites.
In WO92/09615 there is described the use of an alkoxysilyl group as a linker of the oligonucleotide to the support.
This linker is inert during the synthetic cycles and it resists conditions that cleave apurinic sites. The linker is finally cleaved from the solid support with tetra butyl ammonium fluoride (TBAF) to obtain, after reversed-phase separation of DMTr-containing material, an oligonucleotide with both 3′- and 5′-ends intact. However, synthesis of this support was laborious and inconvenient. Due to low reactivity of the functional group of the linker the degree of substitution of the support becomes low which leads to insufficient nucleoside loadings of the support. Thus, this method is not suitable for preparation of support useful for large scale synthesis.
SUMMARY OF THE INVENTION
According to a first aspect, the invention provides a support system for solid phase synthesis of oligomers. The support system comprises a support, a linker and a starting compound of the oligomer. The starting compound is bound to the support via a disiloxyl linkage. The disiloxyl function is linked to a hydroxyl group on the support. The functional groups connected to the disiloxyl group are very reactive allowing for reproducible and controlled loading of the starting compounds.
The support system of the invention is easier to produce compared to prior art systems and provides for high loadings to the support. According to the invention high loading values are obtained for the starting nucleoside. These loadings, often higher than. 200 &mgr;mol/g, are required for cost-effective large scale synthesis.
The linkage is inert during the synthesis cycles and resists conditions that cleave apurinic sites.
In a preferred embodiment, the starting compound is a nucleoside and the solid phase synthesis is used for the synthesis of oligonucleotides.
Supports with immobilized oligonucleotides can be used as hybridization affinity matrices. Some possible applications of such supports are: purification of DNA-binding proteins, affinity purification of plasmids, as a support for gene assembly (from oligonucleotides) and for diagnostic purposes, etc.
In the new support system of the present invention the first nucleoside is bound to the support via a disiloxyl linkage and the system is preferably represented by the following formula (I).
wherein
B is a ribonucleoside or deoxyribonucleoside base; R
2
is —H, —OH, or OR
7
in which R
7
is a protecting group; R
1
is a protecting group; R
3
, R
4
, R
5
, R
6
taken separately each represent alkyl, aryl, cycloalkyl, alkenyl, aralkyl, cycloalkylalkyl, alkyloxy, aryloxy, cycloalkyloxy, alkenyloxy and aralkyloxy; Supp is a solid support; X is an anchoring group used for covalent bonding to the support; (p-Y)
n
and (p-Z)
m
are oligophosphotriester linkers, wherein p represents a phosphotriester, Y and Z are independently selected from a nucleoside and a rest of a diol, A

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solid phase synthesis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solid phase synthesis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solid phase synthesis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3179196

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.