Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2001-01-25
2002-12-31
Ogden, Necholus (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S141000, C510S155000, C510S504000
Reexamination Certificate
active
06500792
ABSTRACT:
BACKGROUND OF THE INVENTION
Antioxidants are known to be useful in combating various conditions of the body associated with the activity of free radicals. Antioxidants quench free radicals so they can not interact with the body's systems.
Among the most well known antioxidants are the vitamins, particularly Vitamin E and its precursors. When used in topical compositions, particularly cleansing compositions, the Vitamin E and its precursors can have difficulty with deposition on skin.
We have now discovered a soap bar, which can deposit significant levels of Vitamin E precursor as well as other vitamins and their precursor(s).
SUMMARY OF THE INVENTION
In accordance with the invention, there is a solid cleansing composition comprising:
a. About 1 to about 90 wt. % soap,
b. About 0.01 to about 2.0 wt. % of a Vitamin E precursor or mixture thereof,
c. Vitamin E precursor deposition effective amount of a cationic deposition polymer or mixture thereof and,
d. From zero to the essential absence of Vitamin E.
DETAILED DESCRIPTION OF THE INVENTION
Soap, the long chain alkyl carboxylate salt, can be present in the solid composition in quantities of from about 1 to about 90 wt. %, desirably about 5 to about 90 wt. %, with desirable minimum of at least about 10, 20, 30, 40, 50 or 60 wt. %. The higher quantities, about 60 to about 90 wt. % are found in the traditional soap bar. Intermediate quantities of soap such as about 40 to about 70 wt. % are generally found in a combination bar while lower quantities of soap, about 10 to about 40 wt. % are generally found in a syndet bar. Preferred salts are the soaps prepared from the alkali metals, such as sodium and potassium and ammonia such as ammonium or substituted ammonium.
Other surfactants can be present or omitted as well. Examples of these surfactants include but are not limited to alkyl sulfates, anionic acyl sarcosinates, methyl acyl taurates, N-acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl phosphate esters, ethoxylated alkyl phosphate esters, trideceth sulfates, protein condensates, mixture of ethoxylated alkyl sulfates and the like.
Alkyl chains for these surfactants are about C
8
-C
22
, preferably about C
10
-C
18
, more preferably about C
12
-C
18
.
Anionic non-soap surfactants can be exemplified by the alkali metal salts of organic sulfate having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester radical (included in the term alkyl is the alkyl portion of higher acyl radicals). Preferred are the sodium, ammonium, potassium or triethanolamine alkyl sulfates, especially those obtained by sulfating the higher alcohols (C
8
-C
18
carbon atoms), sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium or potassium salts of sulfuric acid esters of the reaction product of 1 mole of a higher fatty alcohol (i.e., tallow or coconut oil alcohols) and 1 to 2 moles of ethylene oxide; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate with 1 to 10 units of ethylene oxide per molecule and in which the alkyl radicals contain from 8 to 12 carbon atoms, sodium alkyl glyceryl ether sulfonates; the reaction product of fatty acids having from 10 to 22 carbon atoms esterified with isethionic acid and neutralized with sodium hydroxide; water soluble salts of condensation products of fatty acids with sarcosine; and others known in the art.
Zwitterionic surfactants can be exemplified by those which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. A general formula for these compounds is:
Wherein R
2
contains an alkyl, alkenyl, or hydroxy alkyl radical of from about 8 to about 18 carbon atoms, from 0 to about 10 ethylene oxide moieties and from 0 to 1 glyceryl moiety; Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms; R3 is an alkyl or monohydroxyalkyl group containing 1 to about 3 carbon atoms; X is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorus atom, R
4
is an alkylene or hydroxyalkylene of from 0 to about 4 carbon atoms and Z is a radical selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
Examples include: 4-[N,N-di(2-hydroxyethyl)-N-octadecylammonio]-butane-1-carboxylate; 5-[S-3-hydroxypropyl-S-hexadecylsulfonio]-3 hydroxypentane-1-sulfate; 3-[P,P-P-diethyl-P 3,6,9 trioxatetradecyl-phosphonio]-2-hydroxypropane-1-phosphate; 3-[N,N-dipropyl-N-3 dodecoxy-2-hydroxypropylammonio]-propane-1-phosphonate; 3-(N,N-dimethyl-N-hexadecylammonio)propane-1-sulfonate; 3-(N,N-dimethyl-N-hyxadecylammonio)-2-hydroxypropane-1-sulfonate; 4-N,N-di(2-hydroxyethyl)-N-(2 hydroxydodecyl)ammonio]-butane-1-carboxylate; 3-[S-ethyl-S-(3-dodecoxy-2-hydroxypropyl)sulfonio]-propane-1-phosphate; 3-(P,P-dimethyl-P-dodecylphosphonio)-propane-1-phosphonate; and 5-[N,N-di(3-hydroxypropyl)-N-hexadecylammonio]-2-hydroxy-pentane-1-sulfate.
Examples of amphoteric surfactants which can be used in the compositions of the present invention are those which can be broadly described as derivatives to aliphatic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of compounds falling within this definition are sodium dodecylaminoproprionate, sodium 3-dodecylaminopropane sulfonate, N-alkyltaurines, such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of U.S. Pat. No. 2,658,072, N-higher alkyl aspartic acids, such as those produced according to the teaching of U.S. Pat. No. 2,438,091, and the products sold under the trade name “Miranol” and described in U.S. Pat. No. 2,528,378. Other amphoterics such as betaines are also useful in the present composition.
Examples of betaines useful herein include the high alkyl betaines such as coco dimethyl carboxymethyl betaine, lauryl dimethyl carboxy-methyl betaine, lauryl dimethyl alpha-carboxyethyl betaine, cetyl dimethyl carboxymethyl betaine, lauryl bis-(2-hydroxyethyl)carboxy methyl betaine, stearyl bis-(2-hydroxypropyl)carboxymethyl betaine, oleyl dimethyl gamma-carboxypropyl betaine, lauryl bis-(2-hydro-xypropyl)alpha-carboxyethyl betaine, etc. The sulfobetaines may be represented by coco dimethyl sulfopropyl betaine, stearyl dimethyl sulfopropyl betaine, amido betaines, amidosulfobetaines, and the like.
Many cationic surfactants are known to the art. By way of example, the following may be mentioned:
stearyldimenthylbenzyl ammonium chloride;
dodecyltrimethylammonium chloride;
nonylbenzylethyldimethyl ammonium nitrate;
tetradecylpyridinium bromide;
laurylpyridinium chloride;
cetylpyridinium chloride;
laurylpyridinium chloride;
laurylisoquinolium bromide;
ditallow(Hydrogenated)dimethyl ammonium chloride;
dilauryldimethyl ammonium chloride; and
stearalkonium chloride.
Additional cationic surfactants are disclosed in U.S. Pat. No. 4,303,543 see column 4, lines 58 and column 5, lines 1-42, incorporated herein by references. Also see CTFA Cosmetic Ingredient Dictionary 4
th
Edition 1991, pages 509-514 for various long chain alkyl cationic surfactants; incorporated herein by references.
Nonionic surfactants can be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. Examples of preferred classes of nonionic surfactants are:
1. The polyethylene oxide condensates of alkyl phen
Nabi Zeenat
Riesgraf Diane
Soliman Nadia
Barancik Martin D.
Colgate-Palmolive Company
Ogden Necholus
LandOfFree
Solid composition comprising vitamin E acetate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Solid composition comprising vitamin E acetate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solid composition comprising vitamin E acetate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2932662