Metal fusion bonding – With means to juxtapose and bond plural workpieces – Plural discrete workpieces
Reexamination Certificate
1999-09-09
2001-07-10
Dunn, Tom (Department: 1725)
Metal fusion bonding
With means to juxtapose and bond plural workpieces
Plural discrete workpieces
C228S264000, C228S020100, C228S119000
Reexamination Certificate
active
06257478
ABSTRACT:
DESCRIPTION
The present invention relates to a soldering/desoldering device, in particular for integrated circuits with electric/electronic components, the device comprising a heater nozzle with a substantially bell-shaped housing formed with a lower nozzle opening, the heater nozzle having disposed therein a heat distribution plate which can be acted upon by a hot gas, and an edge of the heat distribution plate and the housing having formed thereinbetween at least one passage opening for hot gas flowing towards the nozzle opening.
Such a soldering/desoldering device is known from German Utility Model Application G 93 04 784. In the prior-art soldering/desoldering device, a heat distribution plate which is formed as a nozzle bottom is heated by a hot gas flow passed through the heater nozzle. To this end the nozzle bottom is made of a material of high thermal conductivity. The nozzle bottom can be put on a surface of a component to be soldered or desoldered. At least one passage opening which permits the passage of hot gas towards leads of the component to be heated is formed between the edge of the nozzle bottom and the housing of the heater nozzle.
A sufficient amount of heat for soldering or desoldering purposes is transferred to the corresponding soldering points by the hot gas flowing through the passage opening and through the nozzle bottom which is heated by being acted upon with hot gas.
In the known soldering/desoldering device, the heat distribution plate is heated by being acted upon with hot gas only from its upper side opposite to the component. Furthermore, the entire hot gas flow exits through the nozzle opening and laterally from the component anf flows along a printed circuit board which has arranged thereon printed circuits and further components. As a result, on the one hand, the heat distribution plate is heated to an increased degree, in particular on its upper side and on the edge facing the passage opening, and, on the other hand, the hot gas which flows off along the printed circuit board may damage the circuit boards and/or further components.
It is therefore the object of the present invention to improve the above-described soldering/desoldering device in such a manner that a uniform heat distribution for soldering or desoldering purposes is attained and that the discharge of hot gas from the heater nozzle is reduced at the same time.
This object is achieved in a soldering/desoldering device comprising the features of the preamble of claim
1
in that at least one return opening for hot gas flowing through the passage opening is disposed in spaced-apart relationship with the passage opening in the heat distribution plate.
As a result, the heat distribution plate is heated from its upper side, in its edge facing the passage opening and in the surroundings of the return opening. This effects, in particular, a uniform heat distribution in the area between edge and return opening, said edge being preferably assigned to the portions of the component which are to be soldered or desoldered. Furthermore, at least part of the hot gas otherwise exiting from the nozzle opening is guided away, e.g. from a printed circuit board, through the return opening so that a smaller amount of hot gas acts on printed circuit boards or other components.
It should be noted that the heat distribution plate is preferably a plate-shaped body having an even upper side and bottom side. However, it is also possible that the heat distribution plate is only even in the sections of its bottom side that face the portions of the component to be soldered or desoldered, and that it has an upper side, or the like, which e.g. obliquely extends downwards towards the passage opening in the direction of the nozzle opening. A plate-shaped distribution plate is in principle only the heat distribution body which can be produced in the easiest manner.
Further non-generic soldering/desoldering devices are known. For instance, DE 44 22 341 discloses a heater nozzle which has disposed therein a hot gas distribution plate with openings of different diameters. The hot gas is thereby to be supplied in a quantitatively controlled manner to an upper side of a component. The hot gas will then exit laterally out of openings in a housing of the heater nozzle.
Furthermore, U.S. Pat. No. 4,752,025 discloses a soldering/desoldering device in which an end plate which partly closes a nozzle opening is arranged in the nozzle opening of a heater nozzle. On account of such an arrangement, the hot gas can only exit next to the side walls of a housing of the nozzle towards the leads of a component. Subsequently, the hot gas which flows off along the leads and the printed circuit board can be sucked off through a sleeve partly gripping over the nozzle.
U.S. Pat. No. 4,295,596 discloses a further soldering/desoldering device in which a heater nozzle comprises a double-walled housing having an inner wall and an outer wall. A suction device is adjustably arranged in vertical direction within the cavity surrounded by the inner wall. Hot gas is supplied between the inner wall and the outer wall. The hot gas flows out of openings which are next to a lower nozzle opening and are directed substantially radially inwards. The exiting hot gas can be sucked off through the cavity surrounded by the inner wall.
U.S. Pat. No. 4,552,300 shows a soldering/desoldering device in which in the case of a desoldering operation hot gas is returned via a central bore into a housing of the device. In such a case the heating operation is only performed through the supply of hot gas to the soldering points without a heat distribution plate or the like. The hot gas is supplied via lateral, vertically extending channels to the soldering point and the supplied gas is heated during the supply. In the case of a soldering action the hot gas is discharged to the outside substantially radially away from the component to be soldered.
To use an inexpensive housing of a simple construction, the housing may comprise a cover wall and a circumferential wall which is connected to said cover wall and which opposite to said cover wall surrounds the nozzle opening.
To supply the hot gas in a simple manner already in the direction of the nozzle opening to the housing, at least one supply opening for the hot gas can be formed in the cover wall. The hot gas flows through the supply opening towards the heat distribution plate
To secure the suction pipe in an easy manner in the heat distribution plate, an opening edge of a lower opening of the suction pipe can grip behind an edge of the suction opening and positively hold said edge, for example with a part of the suction pipe standing on the upper side of the heat distribution plate.
For an improved holding of the component and for an improved sealing of the suction pipe, a suction insert may be insertable in the lower opening of the suction pipe.
To be able to suck the component in an easier manner outside of the housing through the suction means or to be able to place it on a printed circuit board without being visibly impeded by the housing, the suction pipe and/or a suction nozzle which is arranged within the suction pipe can be supported such that it is longitudinally adjustable and/or rotatable relative to the heat distribution plate. As for the suction nozzle, said nozzle is tubularly arranged inside the suction pipe and supported to be adjustable/and or rotatable relative to said pipe. As a result, the suction nozzle can be moved out of the lower opening of the suction pipe and can project beyond the bottom side of the heat distribution plate.
For an improved and sealed suction of the component, the suction insert may be detachably secured to a lower end of the suction nozzle. As a result of the longitudinal adjustability and/or rotatability of suction pipe and/or suction nozzle, the component can be sucked outside the housing and supplied in fitting fashion to the housing for being partly received therein.
For an adaptation to the circumference of a component, and in order to receive the component, at least in
Coats & Bennett P.L.L.C.
Cooke Colleen P.
Cooper Tools GmbH
Dunn Tom
LandOfFree
Soldering/unsoldering arrangement does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Soldering/unsoldering arrangement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soldering/unsoldering arrangement will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2564213