Solderable metallized plastic contact

Electrical connectors – Contact terminal – Having treated surface or distinct contact surface layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06203387

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention concerns conductive coatings used, generally, in the electronics industry. The invention more particularly concerns an electrically conductive, electroplated, material covering a surface of a polymer element, where the electroplated material does not delaminate from the surface of the polymer element after subsequent high temperature soldering.
2. Discussion of the Background
Conductive coatings are well-known in the art which are also known as conductive inks. Conductive inks have many favorable characteristics, in that the compositions may include metals such as silver, copper, lead or tin to provide electrical conductivity. The conductive inks also may include adhesives such as polymeric binders which provide for solderability and adhesion strength. Conductive inks have been used for many applications, including applying conductive traces to printed circuit boards. The related art shows the application of conductive ink by silk screen printing onto a non-moldable insulating baseboard substances, such as FR
4
or glass epoxy.
Polymers, which are commonly referred to as plastics, are known in the art which have characteristics, including high mechanical strength, durability, toughness, chemical resistance and high temperature performance. Liquid crystal polymers (LCPs) offer these characteristics, while providing the advantage of all moldable plastics. LCPs are able to withstand temperatures as high as 520° fahrenheit before deforming. It is an object of the present invention to combine the high temperature and moldable properties of plastics such as LCP with the quick and convenient process of printing with conductive inks.
Other applications require an overall coating of conductive material around an object. Typically, the object is made of a polymer so as to be injection moldable. One quick way of applying an overall coating is by way of an electroplating process. Such a solution was achieved in the automotive industry with the introduction of metallized plastics such as acrylanitrile butadiene styrene (ABS) which is a plastic material having an outer coating of a metal alloy. The metal coating typically includes a base coating of a copper alloy, with a second layer of a nickel alloy covering the copper alloy layer, and a third layer of a chrome alloy covering the nickel alloy layer. The use of metallized plastics in applications such as automotive bumpers and automotive interior compartment decorative trim elements works well for the intended purpose.
Recently, attempts have been made to solder a metallized plastic part to a printed circuit board so as to make electrical contact between the printed circuit board and the electrically conductive coating of the metallized plastic part. The result being that the two components were soldered together. However, the electrically conductive material covering the plastic part delaminated or blistered away from the surface of the plastic part. Such delamination is not acceptable in the electronics industry since the bond between the two components is not adequate. The bond between the two components is subject to tearing and thus subject to loss of electrical continuity between the two components.
Therefore, there is a need for a metallized plastic part which is solderable and which does not delaminate.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a metallized plastic part where the electrically conductive coating does not delaminate from the surface of the plastic part after being soldered.
It is a further object of the invention to provide conductive components which are easily and inexpensively manufactured.
It is another object of this invention to provide a metallized plastic part which is flexible and which does not delaminate after being soldered.
In one form of the invention the electrical connector includes a unitary, molded polymer connector body which is covered in select locations with a firmly-adherent, electrically conductive coating. The connector body includes a base portion and at least one projecting contact arm portion extending from a first end connected to the base portion to a second end spaced from the base portion. The contact arm portion having at least one contact surface defined thereon adjacent the free end thereof. The contact surface having an electrically conductive region thereon defined by the firmly-adherent, electrically conductive coating. The firmly-adherent, electrically conductive coating is solderable. The firmly-adherent, electrically conductive coating does not delaminate from the contact surface of the contact arm.
In another form of the invention a conductive element includes a substrate made of a polymer where an electrically conductive material covers a surface of the substrate so as to form an electrically conductive region on the substrate. The electrically conductive material is electroplated to the surface of the substrate. The electrically conductive material in the electrically conductive region is solderable. The electrically conductive material in the electricaly conductive region does not delaminate from the surface of the substrate.
In yet another form of the invention a an assembly is provided which includes a GBIC standard guide rail system which is electroplated with an electrically conductive material. The GBIC standard guide rail system includes latches. The GBIC standard guide rail system is made of a polymer. The electrically conductive material covering the latches is soldered to conductive traces found on a printed circuit board. The electrically conductive material covering the latches does not delaminate from the surface of the latches. However, other portions of the GBIC standard guide rail system can be soldered to the printed circuit board.
The invention further includes a process for plating an element which includes the first step of electroplating a surface of the element with an electrically condutive material, and the second step of soldering the electrically conductive material of the element to an electrically conductive body so as to make an electrical connection between the element and the body. The electrically conductive material electroplated to the surface of the element does not delaminate from the surface of the element after the step of soldering.
The invention still yet includes a process for plating a GBIC standard guide rail system which includes the first step of electroplating a surface of the GBIC standard guide rail system with an electrically conductive material, and the second step of soldering the electrically conductive material of the GBIC standard guide rail system to an electrically conductive body so as to make an electrical connection between the GBIC standard guide rail system and the body. The electrically conductive material electroplated to the surface of the GBIC standard guide rail system does not delaminate from the surface of the GBIC standard guide rail system after the step of soldering has been completed.


REFERENCES:
patent: 4503131 (1985-03-01), Baudrand
patent: 5599595 (1997-02-01), McGinley et al.
patent: 5688146 (1997-11-01), McGinley et al.
patent: 5962073 (1999-10-01), Timmer
patent: 6074228 (2000-06-01), Berg et al.
The SFF Committee, “Gigabit Interface Converter (GBIC),” Revision 5.1a, Jan. 12, 1999.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solderable metallized plastic contact does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solderable metallized plastic contact, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solderable metallized plastic contact will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.