Solar module mounting method and clip

Static structures (e.g. – buildings) – Combined – With a sunlight activated device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S464000, C052S665000, C136S244000, C126S621000, C126S623000

Reexamination Certificate

active

06672018

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to solar energy collection, and is more particular directed towards an arrangement for attaching solar modules to a supporting structure, such as a roof, rack or tracking structure. The invention is more particularly directed to improvements in hardware clips that facilitate the attachment of unframed photovoltaic modules on any of a variety of supporting structures, for the purpose of constructing arrays of photovoltaic modules in a system to produce electricity. The invention may be employed for the attachment of solar thermal panels and non-solar panels as well.
Photovoltaic systems are used for a variety of purposes, including for use as a utility interactive power supply, as a power supply for remote radiotelephone station, or to power an unattended monitoring station, for example.
Photovoltaic systems consist of one or more photovoltaic (PV) modules, arranged in arrays, attached to a supporting surface, and interconnected with electrical wiring to switches, inverters, battery chargers and batteries, etc. This invention relates to a novel method for attaching the PV modules to a variety of supporting structures. PV modules typically consist of a PV laminate and they may also include a frame. The PV laminate typically consists of an assembly of crystalline or amorphous semiconductor devices electrically interconnected and encapsulated between a transparent front cover of glass or plastic and a back cover. Also, a PV module typically includes electrical conductors exiting the laminate edge or back cover which conduct the solar generated current through the electrical circuit including the PV module. The back cover is typically a tough insulating material that is an electrical insulator, is impervious to moisture, and is often made of either flexible Tedlar and/or other foil, film or rigid glass or plastic.
For PV modules that incorporate a frame, the frame often consists of multiple aluminum extrusion elements which are assembled to surround the laminate, and are mechanically interconnected at the module corners. The frame sections often include a channel to capture the laminate, which channel often is filled with a sealant during the frame assembly procedure. The sealant, often a butyl compound in the form of a gunable caulk, tape or putty, acts to promote the sealing of the edge of the laminate, to provide an adhesive attachment between the frame and the laminate, and to provide a cushion to protect the laminate edge from mechanical damage.
For PV modules that incorporate frames, those frames typically include holes which may accommodate fasteners for the attachment of the PV module to a supporting surface. In this way, the PV module may be attached to a variety of supporting structures, including a tracking structure described in U.S. Pat. No. 6,058,930, or attached onto fixed-tilt structures or to the roof of a building such as described in U.S. Pat. No. 6,111,189.
The PV module frame serves many other purposes. In addition to providing laminate edge protection and a means for mounting the PV module, the PV module frame provides a means to grip the PV module to carry and hold that during installation; the frame provides the appearance of a finished perimeter to the PV module; and the frame may be provided with a finish color to blend according to architectural requirements. In some cases, as in U.S. Pat. No. 6,111,189, the frame may provide means to conceal and protect the interconnection wiring in a PV array.
If the frame is made of a conducting material, the frame must be connected to a grounding conductor as a safety precaution in the event that the PV circuit within the PV laminate inadvertently develops an electrical short to the frame. The frame and the conductors and other electrical components and labor required for the grounding of the frame represent significant portions of the cost of the photovoltaic module. These cost elements are accentuated by the historical falling cost of the PV laminate, and represents a barrier to PV generated electricity achieving a cost that is competitive with conventional power sources. The frame typically increases the volume of a PV module, and this reduces the packing density and increases the cost of shipping the PV module. Also, in order to limit the number of product variations that a manufacturer must offer, PV module frames are typically designed such that a single frame design may be used in a variety of “typical” applications. As a result, the typical frame may not be suitable for applications that have very specific requirements. Manufacturers must therefore also develop custom frames for those applications, and this increases the manufacturer's cost of operation and the PV module cost.
For these reasons, techniques have been investigated and developed to eliminate the requirement for frames for PV modules. In those cases, a variety of means have been developed to accommodate the attachment of the unframed PV laminate directly to a supporting surface.
In one example, as described in U.S. Pat. No. 5,143,556, mounting brackets are adhesively attached to the laminate back surface. The PV module is attached to the supporting structure by means of conventional fasteners engaging the clips and the supporting surface. This eliminates the cost of the frame and the requirement for grounding, but only partly increases the packing density. However, this introduces additional assembly and adhesive curing steps to the manufacturing process. The frameless PV module also specifically prescribes the required locations for the supporting structure members, and limits the number of attachments, thereby limiting the maximum allowable design pressure that the laminate may tolerate. This also imposes the requirement that the back side of the PV module be accessible during installation and module removal and replacement, which limits the application of this technique in typical building roof applications.
In another example, as described in U.S. Pat. No. 5,762,720, elements are bonded to the PV laminate back surface which elements can slidably engage the open side of a common electrical channel strut, including those marketed under the trademarks UNISTRUT™ and BLINE™. The method of the U.S. Pat. No. 5,762,720 has the advantages that no fasteners are required in order to attach the PV module to the supporting surface, that access is not required of the module back surface during installation, and that the requirement for grounding may be eliminated. One limitation of this technique is that if it becomes necessary to remove or replace only a single one of a number of PV modules that are slidably engaged to a supporting channel, it may be necessary to remove several of the adjacent PV modules as well. That limits the practicality of this technique, particularly in building roof applications. This technique also has the limitations described in the U.S. Pat. No. 5,143,556, above.
Another type of frameless PV module is described in U.S. Pat. No. 6,075,201, intended for use as a curtain wall or roof element.
Another approach pursued for attaching PV modules in building roof and other applications, has been to utilize conventional curtain wall, sloped glazing, skylight and other common building glazing materials and techniques. This approach typically employs conventional aluminum structural elements with glazing gaskets and cover caps. This has been shown to be particularly effective in building applications where the PV laminates are basically substituted for some or all of the conventional building glass or plastic glazing or other building panels, and where there is a significant requirement for weatherproofing the building exterior surfaces. This technique does not require special fixtures or clips permanently affixed to the module, as in U.S. Pat. Nos. 5,143,556 and 5,762,720. In addition, this technique accommodates the removal and replacement of single individual PV modules in an array of modules. However, the cost of such conventional building glazing materials and techniques cannot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solar module mounting method and clip does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solar module mounting method and clip, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar module mounting method and clip will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.