Solar cell system and method of establishing the system

Batteries: thermoelectric and photoelectric – Photoelectric – Panel or array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S244000, C136S251000, C136S291000, C126S621000, C126S623000, C052S173300

Reexamination Certificate

active

06384314

ABSTRACT:

The present invention relates to a solar cell system for direct conversion of solar energy to electricity. During the recent years this technique has been widely developed, the cell structures being both cheaper and more effective, and besides, they have become more easily applicable, e.g. in being delivered as a reeled web for mounting in desired sizes on suitable supports. Thereby, real solar cell panels may be built up by local manufacturers or contractors for mounting of the panels on power station areas or on roof or wall areas of buildings, where the panels can be joined so as to cover large areas.
A typical panel size is some ½-1 square meter, e.g. with dimensions 0.5×1 m. Such panels may hold 30-40 solar cells which, when connected in series, may provide a working voltage of 14-18 Volts by direct incidence of the sunlight, this being suitable for the charging of 12 V battery systems. For this purpose the panels may be connected in parallel, but of course they can also be connected in series for generation of a higher voltage. This can be determined in detail for each individual system, all according to the available number of panels.
The panels are mounted most efficiently with equatorially directed angle of incident, i.e. facing south on the northern hemisphere, and with an inclination adjusted according to the relevant latitude such that the average sun in fall can be maximum. In power parks and on flat building roofs this can be achieved by means of suitable carrier structures. In connection with buildings there may sometimes be ideal conditions on inclined roofs facing south, but otherwise it may be fully acceptable to use a less optimal mounting base, e.g. a less optimally inclined roof or even a vertical building wall, inasfar as from a constructional point of view it will be cost saving if the relevant surface can be used for supporting the panels in a direct manner, without the use of carrier structures. It is then possible and also practised to arrange solar cell panels in an architectonically acceptable manner as facade covering units or e.g. as vertical balcony walls.
The invention is based on the consideration that there are certain building parts which, with full architectonical accept, may appear with pronounced slanting orientation, viz. sun shading lamellae mounted outside windows with strong sun infall. These lamellae do not constitute real building faces, but it will be appreciated that they are very well suitable as supports for a solar cell system. Hereby, the traditional conception of solar cell panels as independent, concentrated plate elements should be left behind, as instead elongate and relatively narrow carriers are used for the purpose, e.g. with a width of only 10-20 cm and moreover of such a type which, at the outset, also serves a different purpose, viz. sun shading. These relatively narrow lamellae are well suited as carriers for strips of the said solar cell web material on their outside, as the cells of the material are easily arranged in such a manner that they can be commutated from widely spaced areas and thus generate a desired voltage anyhow. Alternatively, parallel rows of solar cells may be mutually connected at one end, whereby they can be commutated in closely juxtaposed points at the other end.
Apart from any required adaptation of the width of the solar cell web, should it not simply be cuttable into a required smaller width, the invention involves some special circumstances of electrical, mechanical and thermal nature, respectively:
1: COMMUTATION:
In conventional panel systems it is possible to use internal, hidden and factory or workshop mounted series and parallel connections, such that the entire system may appear with a single connector terminal. With the invention it is to be envisaged that it may be required to make extensive use of external wirings and terminations made in situ in conjunction with the mounting work. The lamella technique itself, with lamellae and associated carrier systems, is independently highly developed, and with the invention it is highly undesired to introduce principal modifications in these mechanical systems. As the lamellae extend in parallel and with mutual spacing it will, in practice, be indispensable that wires should be mounted across and, optionally, along these gaps, and special commutation devices should be provided, preferably to be held by the lamellae themselves.
The proper solar cell material will typically be electrically terminated by one or two projecting wires at opposite ends or at one same end of the solar cell strip, respectively, these wires just as typically consisting of flat conductors enclosed between cover sheets endwise projecting from the cell strip. For commutating these conductors, according to the invention, the outer sheet layer can be cut away in local areas above the conductors, while in a nearby area a hole is punched through both the sheet strip and the lamella itself for forming a socket hole, in which there is mounted a wired commutation block provided with one or two contact portions to abut the respective, exposed conductor area or areas a safe abutment being ensured by mechanically clamping together the commutation block and a holding part on the other side of the lamella. Such a mounting can be made in situ, and for the connection of the solar cell strips in series or in parallel across a common end area of the lamellae it is possible to use pre-prepared wire connected commutation blocks with a wire length adapted to the distance between the lamellae, such that the electrical connection work can be reduced to a minimum.
Also, it is thus achievable in a simple manner that the fitters should not be particularly careful for observing a natural requirement of the lamina construction as a whole be kept electrically insulated from the solar cell system. Moreover, the commutation blocks may be designed such that in addition to being insulating they can also be effectively covering the commutation areas, whereby these remain fully protected against corrosion.
2: APPLICATION OF CARRIER STRUCTURE:
The said already highly developed carrier structures for the lamellae will be applicable not only in connection with sun shading systems, but also in general on building surfaces, e.g. building walls and flat roofs or for that sake on pitched roofs, the inclination of which only is not optimum for solar cell panels at the particular place. The carrier structures, including the lamellae themselves, are developed to a high degree of standardization at low costs, and since the lamellae will be perfect carriers for the thin and light cell web material, they are advantageously usable as solar cell panels practically anywhere.
This will or may result in a noticeable change in the technical/architectonical look of the relevant mounting surfaces. Traditionally, the said relatively large, inclined solar cell panels have been mounted in rows with correspondingly large spacings on horizontal surfaces, whereby the surface will visually appear with a pronounced ‘oblique panel’ structure. With the invention the corresponding oblique panels will be noticeably less projecting, without having reduced capacity because of their higher number. The relevant surface, which may also be a vertical building surface, may then be laid out with a smoothened appearance. It will still be ‘toothed’, but not more than might well be aimed at by an architectonical decoration of a non-technical character. The look, therefore, will be much more acceptable than in case of conventional solar panels, and with the use of the said specialized carrier structures the installation will even be advantageous with respect to costs. Additionally, due to its smaller modular size in one main direction, viz. across the lamellae, and a less critical modular size in the other main direction, viz. along the lamellae, the installation can more easily be brought to cover areas with irregular boundaries, e.g. in connection with windows in a building wall. It will be another concept that according to the star

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solar cell system and method of establishing the system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solar cell system and method of establishing the system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar cell system and method of establishing the system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2872261

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.