Solar cell array with multiple rows of cells and collapsible...

Batteries: thermoelectric and photoelectric – Photoelectric – Panel or array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S292000, C136S245000

Reexamination Certificate

active

06177627

ABSTRACT:

FIELD OF THE INVENTION
A solar cell array with collapsible reflectors that inherently erect to form reflecting surfaces which concentrate solar energy onto rows of cells.
BACKGROUND OF THE INVENTION
The harvesting of a large cross-section area of solar energy from a smaller area of solar cells by concentration is a well-recognized art. Known techniques include using lenses such as fresnel lenses to focus the energy onto the cells, and large mirror arrangements to reflect the energy to the cells. However effective these known devices may be in directing energy from a larger area onto a smaller area, they bring with them many problems of practical concern when used for spacecraft.
Land-based apparatus to capture solar energy involves no special problems. Weight, rigidity, variability of environmental conditions such as temperature, and reliability are of lesser concern or may be of concern at all. Most of them can be minimized or corrected by over-design of the apparatus. It is built in place and stays there. Temperature variability is relatively minor. Weight is no concern. Neither is perfect reliability, because within reason the apparatus is accessible and readily repaired. Structural efficiency is really not an issue. A ground based device may simply be made as heavy and strong as desired, with a generous allowance for safety.
Such is not the circumstance for spacecraft. Weight is a primary consideration not only because of the cost per pound to launch the apparatus, but because weight of one part of a spacecraft will necessarily require a reduction of weight elsewhere due to the ultimate limitation on the total launch weight of the entire craft.
Reliability is also a prime concern. Spacecraft are one-way vehicles. Once in space they remain there during their useful life, and except in a few extraordinary situations such as the Hubble Telescope, they will never be approached after launch. The failure of apparatus such as a solar array dooms all or a large part of the intended life and function of the entire craft.
Rigidity in the sense of maintenance of shape under varying conditions is made complicated by the extreme variations in temperature as the apparatus enters and leaves the shadow of the earth. While in the shadow, temperatures as low as −180 degrees C are endured. While out of the shadow and exposed directly to the sun, temperatures as high as 110 degrees C are endured. When the solar panels transition between light and shadow, the change in temperature of the apparatus occurs in only a few minutes, and does not occur uniformly throughout. This results in a reaction known as “thermal snap” in which the distortions that result from rapid temperature change cause a quick bending distortion that shudders the spacecraft and can damage the wing.
As the wing temperatures change over the sunlit portion of the orbit, distortions of the structure can cause the concentrator optics to malfunction. Even more, high temperatures are the enemy of solar cells. It is important to mount the cells in an arrangement such that the energy received by them does not heat the entire array of cells to an unacceptable temperature. This is further complicated if large reflecting areas are involved where there may be localized higher temperatures due to distortions of the reflector.
This is a daunting array of requirements. Over the decades there has been a long succession of solar arrays produced and launched. Many have been successful, but a disheartening proportion of them have failed partially or totally, causing the loss of very costly space vehicles, or a major reduction in their useful life.
It is an object of this invention to provide a lightweight, structurally integral solar array that is readily packed for launch. Upon being opened in space it will itself erect to an operational configuration, without requiring energy or exertion from another source.
It is another object to provide a structure which is forgiving of both global and localized temperature variations, and whose shape is inherently biased toward the optimum.
BRIEF DESCRIPTION OF THE INVENTION
This invention is accomplished in combination with a structural panel upon which spaced apart parallel lines of solar cells are mounted. A spacing on the flat face is provided between each pair of lines of cells. The lines of cells have a dimension of length and a dimension of width. The spacings have a dimension of length and a dimension of base width. The spacings provide a reflector base. A reflector is mounted to each of said reflector bases, extending along said base, parallel to adjacent lines of cells.
A reflector according to this invention is, when erected, shaped as a triangular prism with a base and two reflecting legs, the legs being equal in length to one another so as to form an isosceles triangle whose base angle is such that each side reflects incident energy onto an adjacent cell, whereby energy which would have impacted on a spacing beneath the reflectors is instead reflected to a cell. Because cells are not needed for the area underneath the reflectors, a considerable saving is made.
According to this invention the reflector comprises a flexible, reflective sheet having a dimension of sheet length equal to the base length, a defined dimension of sheet width, and a pair of parallel lengthwise edges. The lengthwise edges of the sheet are fixed to the base at a defined spacing from one another. The dimension of sheet width is about twice the intended length of each arm.
An erector is mounted to the base underneath the sheet. It includes a rigid erector arm with a dimension of length substantially equal to one half of the defined sheet width. The erector arm is angularly pivotally movable relative to the base. It is biased away from the base. The base angles formed by the erector arm are determined by the length of the erector arm and the defined sheet width. With these dimensions established, only one triangle can be formed.
Absent external applied forces, the erector arm will tilt upwardly to engage the underside of the sheet and form the triangular shape. Further tilting movement will be prevented by engagement with the sheet which is relatively inelastic and defines the total length of the two legs.
According to a feature of the invention, the dimensions of base, sheet width and arm length are selected to provide a base angle and reflector height such that energy incident on a surface of the sheet will be reflected over a substantial area of an adjacent cell.
According to a preferred but optional feature of the invention, the erector arm is formed as part of a springy metal sheet having a first fold applied to the base, and a second fold bearing on the underside of the sheet. The metal sheet is self-biased toward an unfolded shape at the fold, whereby the reflector can be compressed toward a flattened configuration by pressing on the sheet to fold the erector. The second fold will be recognized as the erector arm.
The above and other features of this invention will be fully understood from the following detailed description and the accompanying drawings, in which:


REFERENCES:
patent: 4134387 (1979-01-01), Tornstrom
patent: 4313422 (1982-02-01), McEntee
patent: 4316448 (1982-02-01), Dodge
patent: 4384164 (1983-05-01), Richard
patent: 5288337 (1994-02-01), Mitchell
patent: 5344496 (1994-09-01), Stern et al.
patent: 5496414 (1996-03-01), Harvey et al.
patent: 5520747 (1996-05-01), Marks
patent: 5885367 (1999-03-01), Brown et al.
patent: 5979834 (1999-11-01), Falbel
patent: 6017002 (2000-01-01), Burke et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solar cell array with multiple rows of cells and collapsible... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solar cell array with multiple rows of cells and collapsible..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar cell array with multiple rows of cells and collapsible... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446841

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.