Software, systems and methods for managing a distributed...

Electrical computers and digital processing systems: multicomput – Computer network managing – Network resource allocating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S224000, C370S236000

Reexamination Certificate

active

06671724

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to distributed network systems, and more particularly to software, systems and methods for managing resources of a distributed network.
BACKGROUND
Both public and private networks have shifted toward a predominantly distributed computing model, and have grown steadily in size, power and complexity. This growth has been accompanied by a corresponding increase in demands placed on information technology to increase enterprise-level productivity, operations and customer/user support. To achieve interoperability in increasingly complex network systems, TCP/IP and other standardized communication protocols have been aggressively deployed. Although many of these protocols have been effective at achieving interoperability, their widespread deployment has not been accompanied by a correspondingly aggressive development of management solutions for networks using these protocols.
Indeed, conventional computer networks provide little in the way of solutions for managing network resources, and instead typically provide what is known as “best efforts”- service to all network traffic. Best efforts is the default behavior of TCP/IP networks, in which network nodes simply drop packets indiscriminately when faced with excessive network congestion. With best efforts service, no mechanism is provided to avoid the congestion that leads to dropped packets, and network traffic is not categorized to ensure reliable delivery of more important data. Also, users are not provided with information about network conditions or underperforming resources. This lack of management frequently results in repeated, unsuccessful network requests, user frustration and diminished productivity.
Problems associated with managing network resources are intensified by the dramatic increase in the demand for these resources. New applications for use in distributed networking environments are being developed at a rapid pace. These applications have widely varying performance requirements. Multimedia applications, for example, have a very high sensitivity to jitter, loss and delay. By contrast, other types of applications can tolerate significant lapses in network performance. Many applications, particularly continuous media applications, have very high bandwidth requirements, while others have bandwidth requirements that are comparatively modest. A further problem is that many bandwidth-intensive applications are used for recreation or other low priority tasks.
In the absence of effective management tools, the result of this increased and varied competition for network resources is congestion, application unpredictability, user frustration and loss of productivity. When networks are unable to distinguish unimportant tasks or requests from those that are mission critical, network resources are often used in ways that are inconsistent with business objectives. Bandwidth may be wasted or consumed by low priority tasks. Customers may experience unsatisfactory network performance as a result of internal users placing a high load on the network.
Various solutions have been employed, with limited success, to address these network management problems. For example, to alleviate congestion, network managers often add more bandwidth to congested links. This solution is expensive and can be temporary—network usage tends to shift and grow such that the provisioned link soon becomes congested again. This often happens where the underlying cause of the congestion is not addressed. Usually, it is desirable to intelligently manage existing resources, as opposed to “over-provisioning,” i.e. simply providing more resources to reduce scarcity.
A broad, conceptual class of management solutions may be thought of as attempts to increase “awareness” in a distributed networking environment. The concept is that where the network is more aware of applications or other tasks running on networked devices, and vice versa, then steps can be taken to make more efficient use of network resources. For example, if network management software becomes aware that a particular user is running a low priority application, then the software could block or limit that user's access to network resources. If management software becomes aware that the network population at a given instance includes a high percentage of outside customers, bandwidth preferences and priorities could be modified to ensure that the customers had a positive experience with the network. In the abstract, increasing application and network awareness is a desirable goal, however application vendors largely ignore these considerations and tend to focus not on network infrastructure, but rather on enhancing application functionality.
Quality of service (“QoS”) and policy-based management techniques represent efforts to bridge the gap between networks, applications and users in order to more efficiently manage the use of network resources. QoS is a term referring to techniques which allow network-aware applications to request and receive a predictable level of service in terms of performance specifications such as bandwidth, jitter, delay and loss. Known QoS methods include disallowing certain types of packets, slowing transmission rates, establishing distinct classes of services for certain types of packets, marking packets with a priority value, and various queuing methods. In a distributed environment having scarce resources, QoS techniques necessarily introduce unfairness into the system by giving preferential treatment to certain network traffic.
Policy-based network management uses policies, or rules, to define how network resources are to be used. In a broad sense, a policy includes a condition and an action. An example of a policy could be to block access or disallow packets (action) if the IP source address of the data is included on a list of disallowed addresses (condition). One use of policy-based network management techniques is to determine when and how the unfairness introduced by QoS methods should apply.
Policy-based management solutions typically require that network traffic be classified before it is acted upon. The classification process can occur at various levels of data abstraction, and may be described in terms of layered communication protocols that network devices use to communicate across a network link. There are two protocol layering models which dominate the field. The first is the OSI reference model, depicted in FIG.
1
. The layers of the OSI model are: application (layer
7
), presentation (layer
6
), session (layer
5
), transport (layer
4
), network (layer
3
), data link (layer
2
) and physical (layer
1
). The second major model forms the basis for the TCP/IP protocol suite. Its layers are application, transport, network, data link and hardware, as also depicted in FIG.
1
. The TCP/IP layers correspond in function to the OSI layers, but without a presentation or session layer. In both models, data is processed and changes form as it is sequentially passed between the layers.
Known policy based management solutions and QoS methods typically classify data by monitoring data flows at the transport layer and below. For example, a common multi-parameter classifier is the well known “five-tuple” consisting of (IP source address, IP destination address, IP protocol, TCP/UDP source port and TCP/UDP destination port). These parameters are all obtained at the transport and network layers of the models. The large majority of existing policy-based, QoS solutions are implemented by monitoring and classifying network activity at these protocol layers. However, the higher the protocol layer, the more definitive and specific the available data and classifiers. Because conventional policy-based, QoS systems do not employ classifiers at higher than the transport layer, they cannot employ policy-based techniques or QoS methods using the richer and more detailed data available at the higher layers. The conventional systems are thus limited in their ability to make the network more application-aware and vice v

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Software, systems and methods for managing a distributed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Software, systems and methods for managing a distributed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Software, systems and methods for managing a distributed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3177382

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.