Software emulation monitor employed with hardware suspend mode

Data processing: structural design – modeling – simulation – and em – Emulation – In-circuit emulator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S030000

Reexamination Certificate

active

06820051

ABSTRACT:

This application is related to co-assigned applications all of which are incorporated herein by reference:
U.S. patent application Ser. No. 09/154,385 entitled “METHOD OF INITIALIZING A CPU CORE FOR EMULATION” filed Sep. 16, 1998, now U.S. Pat. No. 6,167,365 granted Dec. 26, 2002; and
U.S. patent application Ser. No. 09/483,367, entitled “EMULATION SUSPEND MODE WITH DIFFERING RESPONSE TO DIFFERING CLASSES OF INTERRUPTS” claiming priority from U.S. Provisional Application No. 60/120,809 filed Feb. 19, 1999;
U.S. patent application Ser. No. 09/481,852, entitled “EMULATION SUSPENSION MODE WITH STOP MODE EXTENSION” claiming priority from U.S. Provisional Application No. 60/120,809 filed Feb. 19, 1999;
U.S. patent application Ser. No. 09/483,568, entitled “EMULATION SUSPEND MODE HANDLING MULTIPLE STOPS AND STARTS” claiming priority from U.S. Provisional Application No. 60/120,809 filed Feb. 19, 1999;
U.S. patent application Ser. No. 06/09/483,697, entitled “EMULATION SUSPEND MODE WITH FRAME CONTROLLED RESOURCE ACCESS” claiming priority from U.S. Provisional Application No. 60/120,809 filed Feb. 19, 1999;
U.S. patent application Ser. No. 09/482,902, entitled “EMULATION SUSPEND MODE WITH INSTRUCTION JAMMING” claiming priority from U.S. Provisional Application No. 60/120,809 filed Feb. 19, 1999;
U.S. patent application Ser. No. 09/483,237, entitled “EMULATION SYSTEM WITH SEARCH AND IDENTIFICATION OF OPTIONAL EMULATION PERIPHERALS” claiming priority from U.S. Provisional Application No. 60/120,960 filed Feb. 19, 1999;
U.S. patent application Ser. No. 09/483,783, entitled “EMULATION SYSTEM WITH ADDRESS COMPARISON UNIT AND DATA COMPARISON UNIT OWNERSHIP ARBITRATION” claiming priority from U.S. Provisional Application No. 60/120,791 filed Feb. 19, 1999;
U.S. patent application Ser. No. 09/481,853, entitled “EMULATION SYSTEM WITH PERIPHERALS RECORDING EMULATION FRAME WHEN STOP GENERATED” claiming priority from U.S. Provisional Application No. 60/120,810 filed Feb. 19, 1999; and
U.S. patent application Ser. No. 09/483,321, entitled “EMULATION SYSTEM EMPLOYING SERIAL TEST PORT AND ALTERNATIVE DATA TRANSFER PROTOCOL” claiming priority from U.S. Provisional Application No. 60/120,667 filed Feb. 19, 1999
TECHNICAL FILED OF THE INVENTION
The technical field of this invention is complex integrated circuits including embedded digital processor cores and more particularly in circuit emulation of integrated circuits with embedded digital processor cores.
BACKGROUND OF THE INVENTION
Programmable digital processors such as microprocessors and digital signal processors have become very complex machines. Testing these programmable digital processors has also become complex task. It is now common for semiconductor manufactures to build single integrated circuit programmable digital processors with millions of transistors. The current trend is to devote many of these transistors to on-chip cache memories. Even so, the number of logic circuits and their complex relationships makes testing such integrated circuits an increasingly difficult task.
A trend in electronics makes this testing problem more difficult. Single integrated circuit programmable digital processors are becoming more and more of the electronics of many end products. A single integrated circuit used in this way typically includes a programmable digital processor, read only memory storing the base program, read/write memory for operation and a set of peripherals selected for the particular product. This trend is known as system level integration. In the ultimate system level integration, all the electronics are embodied in a single integrated circuit. This level of integration is now achieved in electronic calculators. Many electronic calculators consist of a single integrated circuit, a keyboard, a display, the battery or solar panel power source and a plastic case. Such integration provides less “visibility” into the operation of the programmable digital signal processor. Because the address and data busses of the digital processor are no longer brought out the device pins, it is more difficult to determine the behavior of the embedded processor from external connections.
Another trend in electronics makes this testing problem more difficult. Many new product applications require differing types of processing. Often control processes and user interface processes are better handled with a different programmable digital processor than digital signal processes. An example is wireless telephones. Many coding/decoding and filtering tasks are best handled by a digital signal processor (DSP). Other tasks such as dialing, controlling user inputs and outputs are best handled by microprocessors such as a RISC (Reduced Instruction Set Computer) processor. There is a trend for a system integrated circuit to include both a RISC processor and a DSP. These two processors will typically operate independently and employ differing instruction set architectures. Thus there may be more than one programmable digital processor on a single integrated circuit, each having limited visibility via the device pins.
Another problem is product emulation when employing these programmable digital processors. Product development and debugging is best handled with an emulation circuit closely corresponding to the actual integrated circuit to be employed in the final product. In circuit emulation (ICE) is in response to this need. An integrated circuit with ICE includes auxiliary circuit not needed in the operating product included solely to enhance emulation visibility. In the typical system level integration circuit, these emulation circuits use only a very small fraction of the number of transistors employed in operating circuits. Thus it is feasible to include ICE circuits in all integrated circuits manufactured. Since every integrated circuit can be used for emulation, inventory and manufacturing need not differ between a normal product and an emulation enhanced product.
As a result of these trends there is a need in the art for integrated circuits which are easier to test and easier to emulate.
SUMMARY OF THE INVENTION
This invention involves in-circuit-emulation of an integrated circuit. The integrated circuit includes a digital data processor capable of executing program instructions. A debug event detector detects predetermined debug event. Upon detection of a debug event, the in-circuit-emulator suspends program execution except for real time interrupts. An emulation monitor program permitting visibility into the state of the integrated circuit is run as such a real time interrupt interrupt.
The integrated circuit includes a serial scan path for control of the state of the integrated circuit, such as a JTAG interface. The in-circuit-emulation selectively assigning emulation resources of the integrated circuit to one of the serial scan path or the monitor program. A monitor privilege input controls this assignment by its digital state. The emulation resource may be a read write data register and the assignment includes accessing the data register.
These and other aspects of this invention are illustrated in the drawings, in which:
FIG. 1
illustrates the environment of the debugging system of this invention which is known in the art;
FIG. 2
illustrates the known 14-pin JTAG header used to interface the target system to the access adapter;
FIG. 3
illustrates an emulation level view of the target system;
FIG. 4
illustrates an electrical connection view of the coupling between the access adapter and the target system; and
FIG. 5
illustrates the possible operation states in the debugging environment of the preferred embodiment of this invention.


REFERENCES:
patent: 3891974 (1975-06-01), Coulter et al.
patent: 5274831 (1993-12-01), Katsuta
patent: 5511217 (1996-04-01), Nakajima et al.
patent: 5884023 (1999-03-01), Swoboda et al.
patent: 5960191 (1999-09-01), Sample et al.
patent: 6055649 (2000-04-01), Deao et al.
patent: 6075941 (2000-06-01), Itoh et al.
patent: 6085336 (2000-07-01), Swoboda et al.
patent: 6173386 (2001-01-01), Key et al.
patent: 6289300 (2001-09

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Software emulation monitor employed with hardware suspend mode does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Software emulation monitor employed with hardware suspend mode, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Software emulation monitor employed with hardware suspend mode will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3347046

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.