Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Chemical analysis
Reexamination Certificate
1999-08-27
2002-03-26
Hoff, Marc S. (Department: 2857)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Chemical analysis
C702S028000, C702S172000, C356S445000, C033S511000
Reexamination Certificate
active
06363328
ABSTRACT:
SCOPE OF THE INVENTION
This invention relates to a data processor which may be used in processing signals and displaying information received from a meat probe to carry out objective determinations of meat quality. The data processor of the present invention analyses feature aspects of the probe data for patterns and makes predictions of meat tenderness based upon similarities to previous samples with known measures of meat tenderness. A system which consistently predicts meat quality, particularly in respect of tenderness, would be of significant benefit to the consumer, and as well to the packing house and to the farmer. The data processor works in conjunction with a meat probe which emits radiation to excite connective tissue to fluoresce. The meat probe is designed to pick up and transmit signals relating to fluorescence and position of the probe to the data processor. The data processor then analyses the data required from the meat probe and displays the information in graphical format on a display device.
BACKGROUND OF THE INVENTION
It is well known in the art that connective tissue is a major factor in variation of tenderness between different cuts of meat. Collagen, which is the dominant protein of connective tissue, emits blue-white fluorescence when excited with UV light at around the 370 nm range. There are several different biochemical types of collagen that differ in molecular structure. Of the two dominant types that occur in skeletal muscle and tendons, type I forms large unbranched fibres while type III forms small branched reticular fibres. Hence a meat probe coupled with a data processor capable of stimulating, measuring and analysing fluorescence from a cut of meat can be used in assessing meat tenderness.
The principle of connective tissues in meat fluorescing when exposed to a particular radiation wavelength has been known for some time as described by Swatland, H. J. Objective Measurement of Physical Aspects of Meat Quality, Reciprocal Meat Conference Proceedings, Vol. 42, 1989. Initial investigations in the development of a probe, which is capable of both exciting and collecting fluorescence from connective tissue in meat, are described in Swatland, H. J. Analysis of Signals from a UV Fluorescent Probe for Connective Tissue in Beef Carcasses, Computers and Electronics in Agriculture (6, 1991) 225:218 and Bidirectional Operation of a UV Fluorescent Probe for Beef Carcass Connective Tissues, Computers and Electronics in Agriculture (7, 1992) 105:300, both of Elsevier Science Publishers B. V. Amsterdam. The original probe was an adaptation of a fat depth probe used by the Danish Meat Research Institute in Denmark for measuring the depth of fat on pig carcasses. The original probe was adapted by the use of an optical fibre which was inserted in the device. The fibre was cut at an angle so that the interface optics were asymmetrical. Exciting radiation was supplied in the optic fibre from a 100 watt short arc mercury source directed through a heat absorbing filter, a red attenuation filter and a dichroic mirror. Light peaking at 225 nanometers was directed into the proximal end of the optic fibre with a microscopic objective. Fluorescence from the connective tissues in contact with the optical fibre of the probe was measured through the dichroic mirror at the proximal end of the fibre with a flat response silica detector and a radiometer. The dichroic mirror was used as a chromatic beam splitter to separate the outgoing excitation light at 225 nanometer from the incoming fluorescent emission at a wavelength considerably greater than 225 nanometer. A depth measurement device for measuring the depth to which the probe was plunged into the carcass was provided either by an optical shaft encoder to trigger photometer measurements at set increments through the carcass, or a continuously variable analogue device, such as a potentiometer. The operation of the potentiometer can be affected by temperature.
The positioning of the glass optic fibre in the probe was also suggested, instead of being cut at an angle, of being slightly bent or rounded in conjunction with a plurality of additional thin fibres as described in the article by Swatland, H. J., Bi-directional Operation of a UV Fluorescence Probe for Beef Carcass Connective Tissues Computers and Electronics in Agriculture 7(1992) 105:300. The use of the multiple fibres around the glass optic fibre was to gather additional information in respect of shape of the connective tissue as the probe passed by the connective tissue. Extensive analysis of the collected fluorescence from use of the meat probe is described in several papers by Swatland in Food Research International which include Correction for Baseline Drifting in Probe Measurements of Connective in Beef, Food Research International 26, 1993 371:374; An Anomaly in the Effective Temperature on Collagen Fluorescence in Beef, Food Research International, 26, 1993 271:276 and Correlations of Mature Beef Palatability with Optical Probing of Raw Meat, Food Research International, Vol 10, No. 4, pp 403-446, 1995. Swatland also published with others in Swatland et al., An Effective Connective Tissue on the Taste Panel Tenderness for Commercial Prime Beef Detected with a UV Fibre Optic Probe (cite to be inserted) and UV Fibre Optics Probe Measurements of Connective Tissue in Beef Correlated with Taste Panel Scores for chewieness, Food Research International, Vol 10. No. 1, pp 23-30, 1995.
Data collected from a meat probe plunged in a carcass usually includes at least two parameters: depth of insertion of the probe and level of fluorescence. Once this data has been obtained, it is necessary to process, evaluate and present it in some meaningful manner. By processing feature aspects of the data and recognizing and associating patterns in the data with previous patterns where the measure of tenderness is known, it is possible to predict tenderness of a meat sample. In addition, since data presented in table form can be difficult to comprehend, the typical method of display is to use graphical display with depth of penetration on the x axis and level of fluorescence on the y-axis. When viewing data obtained in this way, the graph forms a number of peaks and valleys of varying height and widths. The data will vary from sample to sample in amplitude and variation of amplitude from different positions on the carcass, as well as from carcass to carcass. It was thought that a comparison of the number of peaks, height of peaks, frequency of peaks and width of peaks for various samples of meat all on the same scale allowed one to assess tenderness by virtue of these characteristics. It was generally understood that a print-out of these characteristics, which shows a relatively smooth line, indicated tender meat. Presenting the above characteristics of the fluorescent data always at the same scale was believed to be more than sufficient in assessing and evaluating the information in establishing tenderness. We have now discovered that changing the scale for the representation of the data provides useful visual information in evaluating meat tenderness. It has been found that, in changing the scale, there is useful information in respect of the number of peaks, height of peaks, frequency of peaks and width of peaks where in the scale which normally accommodated tougher pieces of meat, the representation would in essence be flatline. This is useful in allowing an operator to visually assess the structure of the collagen and tenderness of the meat. In addition, we have also discovered that upon analysis of chosen aspects of the data, and comparing those aspects with information from previous cases where meat tenderness is known, it is possible to predict meat tenderness and to categorise the probed sample into a tenderness classification.
SUMMARY OF THE INVENTION
The invention provides a data processor used in the overall process of determining meat tenderness which receives, analyses and graphically displays in a dynamic format collected fluorescence emitted by connective tissue a
Alston & Bird LLP
Hoff Marc S.
Ontario Cattlemen's Association
Vo Hien
LandOfFree
Software controlled meat probe for use in determining meat... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Software controlled meat probe for use in determining meat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Software controlled meat probe for use in determining meat... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2874536