Snowboard drive system

Land vehicles – Skates – Runner type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S014210, C280S607000

Reexamination Certificate

active

06234513

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a snowboard and more particularly to a snowboard with a drive system that facilitates turning and stability.
BACKGROUND OF THE INVENTION
Whether on skis or a snowboard, every rider wants to be able to carve a turn as they traverse down the ski slope. Carving a turn amounts to putting the skis or snowboard on edge and then shooting through a smooth arc. World cup skiers carve their turns as they thread the gates on a slope. Advanced snowboarders carve turns as they lean deep into the mountain and drive the edge of their boards hard into the slope. Most skiers and snowboarders, however, do not carve their turns, but rather skid their ski or snowboard tails through a scraping turn.
The design of a conventional snowboard only serves to amplify the difficulty experienced by the average snowboarding while attempting to carve a turn. Based on the fact that the bindings are spaced far apart on a conventional board to enable the rider to maintain a preferred stance that facilitates balance and maneuverability, and that the size of the bindings are very small relative to the board, the load applied by the rider during a turn tends to be a point load applied through the foot/bindings and tends to only support a relative small area of the board adjacent the boot bindings. With the reaction forces being upwardly directed, the board tends to bend around the foot/bindings. Because the middle section is generally unsupported by the applied load, it tends to bend in a direction opposite to the bend of the ends of the board. As a result, the conventional snowboard is prone to flat spots and negative flex regions, which diminish the snowboard's ability to hold an edge through a carving turn.
One way manufactures of conventional snowboards have been able to achieve more uniform reaction forces along the entirety of the edge of the board and combat the problem of flat spots and negative flex regions is to make an overall stiffer board, i.e., a carving board. To master the art of turn carving with a conventional snowboard, the rider must drive the snowboard into the slope hard enough to cause it to bend in a manner that causes it to form a turn carving arc. It follows then that the stiffer the snowboard, the more difficult it will be to maneuver for overall snowboarding and, as a result, the stiffer board is less desirable for over all snowboarding.
Although a more flexible snowboard will be easier to maneuver, it will also be less stable. Because a snowboard generally has a wide body, the ends of the snowboard will naturally tend to twist as the snowboard bends as the edge of the snowboard is driven into the mountain to make a turn. Thus, as the snowboard becomes more flexible, it tends to more readily twist and negatively bend between the bindings.
Most snowboard manufacturers appear to be using similar approaches to address these problems. With the end goal being uniform flex and reaction forces along the edge and body of the snowboard, which leads to more predictable and controllable performance and greater stability, the manufactures are going to great lengths to distribute the point loads applied to the board by the rider to greater areas along the edge of the board. Some of the approaches used by these manufactures include varying the thickness of the board or utilizing a variety of different stiffening methods, e.g., torsion forks and ribs within the board, in combination with different orientations and different materials throughout the board. The most popular board design appears to include making the segments of the board where the boot bindings are mounted thicker than the middle and end segments of the board. The thickened boot/binding segments of the board tend to distribute more of the load from the rider over a greater portion of the edge of the board. However, given the standard mounting method for boot bindings on the typical snowboard, it is very difficult to distribute the rider's load uniformly to a great enough area on the board to get uniform flex without making a very stiff board or a board having extreme variations in the thickness and stiffness across the board's laminate construction. In addition to being quite costly to manufacture, such laminate construction would likely have difficulty surviving the thrashing a snowboard experiences without the occurrence of innerlaminer sheer, which would likely result in board failure.
Therefore, it would be desirable to have a snowboard that facilitates uniform flex and reaction forces along the edge and body of the snowboard, that performs more predictably and controllably, that facilitates turn carving without reducing the snowboard's stability, that provides better edge hold through a turn, and that has a softer more forgiving overall feel but is able to maintain consistent edge hold when the board is pushed aggressively at higher speeds when reaction forces become greater.
SUMMARY OF THE INVENTION
The snowboard of the present invention serves to facilitate turn carving by distributing the load applied by the rider over a much greater portion of the edge of the board and, thereby, reduces the negative running edge (i.e., flat spots and negative flex regions) of the snowboard without reducing the snowboard's stability. Furthermore, the snowboard of the present invention also serves to facilitate uniform flex and reaction forces along the edge and body of the snowboard, which tends to result in more predictable and controllable performance, a softer more forgiving overall feel and the ability to maintain consistent edge hold when the board is pushed aggressively at higher speeds when reaction forces become greatest. The snowboard preferably comprises a spider mount drive system operably mounted on the board wherein the drive system includes a drive base that is operably coupled to a boot binding and is adapted to distribute a load applied by a rider to multiple locations along the edge of said body. The drive base preferably includes a central cross member and first and second elongated leg members extending outwardly from its heel and toe locations and preferably pivotally mounted to the board. The drive base may be formed integrally with the binding or, alternatively, be formed as a separate insertable member.
The spider mount drive system enables the rider's load to be distributed to specific locations as needed to achieve a much wider range of performance goals. Within a conventional board you could not achieve a specific stiffness when the board flexes up from its static position versus when it flexes down from its static position. With the spider mount you have the ability to load specific areas of the board under specific situations and transmit reaction forces from one specific area to another specific area of the board. It is also possible to be very specific when and how each individual area of the board is loaded to achieve optimal results when using the spider mount drive system. This all can be achieved while reducing the complexity of the construction of the snowboard. The snowboard can be made cost effectively and still achieve a high level of performance over a much wider range of conditions because of the ability to change snowboard's flex characteristics through the use of the spider mount drive system.
An alternative drive system of the present invention also serves to facilitate turn carving by increasing the ratio of the positive running edge of the snowboard to the negative running edge of the snowboard without reducing the snowboard's stability. The drive system preferably increases the stiffness of the snowboard in an area between the boot binding mounts by directing a turning load inwardly toward the central axis of the snowboard and outwardly toward the edges of the snowboard. The stiffness of the area of the snowboard between the boot binding mounts is preferably increased by mounting V-shaped, diamond-shaped, or T-shaped drive members to the body or integrally forming the V-shaped, diamond-shaped, or T-shaped member

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Snowboard drive system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Snowboard drive system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snowboard drive system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441402

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.