Land vehicles – Runner vehicle – Standing occupant
Utility Patent
1997-11-19
2001-01-02
Mai, Lanna (Department: 3619)
Land vehicles
Runner vehicle
Standing occupant
C280S613000, C280S627000
Utility Patent
active
06168173
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a snowboard boot having a binding interface that facilitates side-to-side movement of the snowboard boot relative to a snowboard.
2. Description of Related Art
Snowboard riders typically prefer some degree of side-to-side flexibility between their snowboard boots and snowboard. Side-to-side flexibility (also known as foot roll) enhances the rider's ability to more easily shift his or her weight and body position over the board for balance and control. Side-to-side flexibility may also improve the overall ride by allowing bumps to be more readily absorbed than if the boot was rigidly attached to the board without any side-to-side flexibility. Thus, the ability of the boot to roll side-to-side relative to the board provides a performance and feel that many riders find desirable.
A rider's boots are secured to the board via bindings that are typically disposed at an angle relative to the longitudinal axis of the board. Since the angle is a matter of personal preference, conventional snowboard bindings enable the rider to adjust and fix the rotational orientation of each binding to suit the rider's individual style. Generally, the degree of side-to-side flexibility preferred by a rider is a function of the boot orientation relative to the board. For example, when the boots
20
are positioned perpendicular to the longitudinal axis Y—Y of the snowboard
21
as illustrated in FIG.
1
a
, a rider may prefer a greater amount of side-to-side flexibility than when the boots are positioned at less of an angle to the longitudinal axis of the board, as illustrated in FIG.
1
b
. The boots
20
may have different angular orientations relative to each other, and the rider may wish to have a different degree of side-to-side flexibility for each boot.
Snowboard boots are of three general types, i.e., hard boots, soft boots and hybrid boots which combine various attributes of both hard and soft boots. A hard boot is similar to an alpine ski boot and typically employs a relatively hard molded plastic shell for supporting a rider's foot and lower leg with minimal foot movement allowed by the boot. Hard boots are generally preferred by riders that engage in racing or alpine riding which requires fluid edge-to-edge movement for smooth carving in the snow at high speeds. Hard boots conventionally have been secured to the board using plate bindings that include front and rear bails or clips that engage the toe and heel portions of the boot. The bails in these bindings inherently allow the boot to roll side-to-side relative to the snowboard, which is desirable for the reasons stated above.
Soft boots, as the name suggests, typically are comprised of softer materials that are more flexible than the plastic shell of a hard boot. Soft boots are generally more comfortable and easier to walk in than hard boots, and are generally favored by riders that engage in recreational, “freestyle” or trick-oriented snowboarding. Soft boots conventionally have been secured to the board using a strap binding which includes several straps that are tightened across various portions of the boot. The straps are typically formed of a plastic material that inherently has some flexibility that allows the sole of the boot to roll side-to-side within the binding.
More recently, side-grip snowboard bindings have been developed for use with soft snowboard boots. Examples of such side-grip binding systems are disclosed in U.S. Pat. No. 5,299,823 (Glaser) and U.S. Pat. No. 5,520,406 (Anderson). These bindings generally employ rigid, metal engagement members that firmly grip opposite sides of a metal binding interface that is attached to the boot sole. The metal-to-metal contact between the binding and the interface results in the sole of the boot being more rigidly attached to the board than with a plate or strap binding. Additionally, because these types of bindings do not directly engage the toe or heel of the boot, the sole of the boot must generally be relatively stiff to prevent the rider's toe or heel from undesirably lifting away from the board when riding. This stiffness is typically provided by an internal stiffener that extends the length and width of the sole. The combination of a stiff boot sole and a binding that rigidly grips the sides thereof essentially eliminates any side-to-side flex or roll between the boot and the binding. Thus, when the snowboard boots are secured to the binding, there is little, if any, side-to-side roll or flexibility between the boot sole and the board.
It should be understood that when the sole of the boot is rigidly attached to the board, the boot itself, particularly if a hard shell boot, provides little, if any, side-to-side flexibility. The side-to-side flexibility afforded by snowboard boots is generally a function of the stiffness of the boot shell, which impacts the ability of the rider to roll the foot or flex the ankle within the boot. However, since the ankle joint itself has limited side-to-side flexibility, even soft shell boots may not provide the rider with as much side-to-side flexibility as a rider may desire when used in conjunction with side-grip bindings that rigidly engage the boot sole. Rather, the feel that most riders desire is achieved only by enabling the sole of the boot to roll side-to-side relative to the board.
In view of the foregoing, it is an object of the present invention to provide an improved method and apparatus for interfacing a snowboard boot and a snowboard.
SUMMARY OF THE INVENTION
In one illustrative embodiment of the invention, an apparatus is provided that comprises a snowboard boot and a binding interface that includes at least one interface feature that is adapted to engage with a snowboard binding. The boot includes a pair of attachment points that are spaced apart in a side-to-side direction. The binding interface is movably mounted to the snowboard boot so that the snowboard boot can flex, relative to the binding interface, in the side-to-side direction through an angle to provide side-to-side flexibility. The binding interface is mounted to the boot at the pair of attachment points with a pair of strapless fasteners.
In another illustrative embodiment, an apparatus is provided that comprises a snowboard boot that includes a bottom surface, and a strapless binding interface that is movably mounted to the snowboard boot so that the snowboard boot can flex side-to-side relative to the binding interface to provide side-to-side flexibility. The binding interface includes a first interface feature disposed adjacent a first side of the boot and a second interface feature disposed adjacent a second side of the boot. The first and second interface features are adapted to engage with a snowboard binding. At least a portion of one of the first and second interface features does not protrude below the bottom surface of the boot.
In a further illustrative embodiment of the invention, an apparatus is provided that comprises a snowboard boot including a first side and a second side, and a strapless binding interface movably mounted to the snowboard boot so that the snowboard boot can flex side-to-side relative to the binding interface to provide side-to-side flexibility. The binding interface includes at least one interface feature that is adapted to engage with a snowboard binding, wherein the at least one interface feature does not protrude beyond the first and second sides of the boot.
In another illustrative embodiment of the invention, an apparatus is provided that comprises a snowboard boot, a binding interface movably mounted to the snowboard boot so that the snowboard boot can flex side-to-side relative to the binding interface to provide side-to-side flexibility, and an adjustment member supported by one of the boot and the binding interface. The adjustment member is constructed and arranged to adjustably restrict the side-to-side flexibility between the boot and the binding interface. The binding interface includes at least one interfa
Dodge David J.
Reuss Stefan
Mai Lanna
Restifo Jeffrey
The Burton Corporation
Wolfe, Greenfield & Sacks, P.C.
LandOfFree
Snowboard boot with binding interface does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Snowboard boot with binding interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snowboard boot with binding interface will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2480470