Land vehicles – Skates – Shoe attaching means
Reexamination Certificate
2001-08-23
2003-04-01
Vanaman, Frank (Department: 3618)
Land vehicles
Skates
Shoe attaching means
C280S014220
Reexamination Certificate
active
06540248
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to boot binding assemblies, and more particularly to a binding assembly for securing boots to a snow board, including bale elements for attachment to the boots, the elements in turn engageable with a pair of bindings for attachment to the snow board, and the bindings being designed with structural elements that avoid cavities that can accumulate ice and snow.
2. Description of the Prior Art
Since the advent of the snowboard, numerous types of bindings have been invented in order to properly secure a rider's boots, but as will be described in the following, these devices leave some problems unsolved. The snowboard is an elongated structure with upturns at one or both ends. It is normally shorter and wider than the more typical snow ski conventionally used in pairs. Instead of having the feet bound on separate skis and pointing forward, they are both bound to a single snow board and usually face generally towards the sides, although some adjustment of their position is a useful feature. At first glance, the use of the board appears similar to a small surfboard. A significant different is that the rider's feet are simply placed on a surfboard whereas the snow board system requires the rider's feet to be bound to the board for maximum maneuverability. Current snow board bindings are of two major categories, for use with soft boots or hard boots. The choice of boot type depends on the riding style, with the soft boot used for freestyle and free riding, and hard boots for alpine and racing. One type of soft board binding uses two or three straps attached to a plate mounted to the snow board. The straps are wrapped over the instep of the boot, around the ankle and then fastened together with ratcheting buckles. This kind of binding causes severe difficulties for a number of reasons, including the fact that at least one boot must be removed from its binding whenever the skier needs propulsion on level or uphill conditions, such as when making one's way to a ski lift. In order to emphasize this particular problem, consider a typical scenario. First the rider secures the front foot to the board. In order to do so, one sits in the snow, reaches down to clear snow that has collected in the binding or on the bottom of the boot, and then opens the now loose series of straps and puts the boot in the binding. With gloved hands, one has to engage a series of ratcheting mechanical buckles to secure the front boot. Once the front boot is secured the rider is ready to enter the ski lift to the top of the mountain. Arriving at the top, the rear boot must be mounted to the board in a similar fashion. When the skier reaches the bottom of the hill, the rear boot is released from the binding and the process is repeated, over and over again for every run, which can amount to an average of 40 to 50 times in a day.
The problem of exiting from the bindings is not only a nuisance compounded by the cold and clumsiness of gloved hands, but it is also dangerous. During the 1992-1993 season it was reported in the Tahoe area that two snowboarders died from suffocation in the heavy powder. In many such emergency situations it is extremely important to be able to quickly exit from the board in order to gain maneuverability. An additional problem with the strap type of bindings is that pressure from the straps is transferred to the users foot, particularly while riding the lift. This pressure over the day causes muscle fatigue and pain.
Attempts have been made to design “step-in” snow board bindings, examples of which will be described in the following discussion. A problem with these attempts is that they consist of complex mechanical apparatus containing pockets and crevices which accumulate ice and snow in a way that causes operational failure or difficulties.
The need for ease of entry and quick exit for safety reasons was discussed above. In addition, one might wonder about a possible need for automatic release from a snow board such as is generally incorporated in the more conventional two ski apparatus. The answer to this is that with conventional snow skis, the users feet are bound to separate skis of lengthy dimensions. In a fall, the possibilities for entanglement and various leverages to the limbs is great. In contrast, both feet are bound to a single relatively short board in the snow board application, a condition that does not contain nearly as much probability of applying damaging leverage to a skiers limbs. Also, one might wonder if the principles used in conventional snow skies would be applied to snow board bindings. The answer again, is that the two applications are significantly different. For example, the conventional snow ski is used along with rigid boots, requiring a different type of binding than that required for use with the soft snow ski boot. Also, the release mechanisms in conventional snow skis dominate their design and are not useful with snow boards because the boots on a snow board are mounted generally transverse to the board length, a condition that can not generate the leverage required to release such a binding.
From the above discussion, it is clear that one of the design factors in a successful snow board binding is ease of entry and exit. Other factors include simplicity, low cost and reliability. One example of a binding design that addresses the problem of ease of entry and exit is the disclosure in U.S. Pat. No. 4,728,118 by Pozzobon et al. describing a binding that can be entered with a downward thrust of the foot. The bottom of the boot has cavities to match upwardly protruding captivating extensions attached to the board, one of which is slidably mounted and spring loaded to allow the binding protrusions to snap in place in the boot. One disadvantage of this approach is the presence of the cavity in the bottom of the boot which must be kept free of snow and ice buildup in order to function properly. The binding also has numerous springs and slidable parts which, if not carefully designed and manufactured could be susceptible to moisture penetration and jamming due to ice formation.
In U.S. Pat. No. 5,035,443 by Kincheloe there is disclosed a binding composed of a plate mounted to a board having upturned captivating edges forming a socket. A matching mating plate is attached to the bottom of the boot which the user must then align with the socket and slidably make engagement. The locking mechanism in the socket has concealed crevices potentially allowing penetration of moisture which could freeze and render the release mechanism inoperable, as well as the joints between the sliding plate and socket during operation.
Glaser, in U.S. Pat. No. 5,299,823 discloses a binding having a plate mounted to the board with a fixed position longitudinally oriented socket on one side and an oppositely disposed spring loaded slidable socket on the other side. A plate is attached to the boot in a manner similar to Kincheloe with one edge protruding longitudinally from one side of the boot, and an opposing edge from the other side of the boot. In operation, the user places one edge of the plate in the first socket, and forces the opposing edge downward upon the slidable socket which has a tapered edge so that when the user forces the edge of the plate dorm against the tapered edge, the socket moves away until the opposing edge snaps into the socket. The disadvantage of this design is that snow and ice can form inside the sockets of the binding plate, making full engagement either impossible or difficult. Also, the slidable spring loaded socket has a multitude of springs and interconnecting parts, which again raise the probability of moisture penetration which could freeze and render the mechanism inoperable.
In U.S. Pat. No. 4,973,073 by Raines, a binding is disclosed which is similar to the Glaser invention in that a plate is again attached to the boot with protruding edges on either side. The binding portion attached to the board consists of a separate socket on one side.
Anderson Erik
Sand Jeff
Fish & Richardson P.C.
Vanaman Frank
Vans, Inc.
LandOfFree
Snowboard boot and binding apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Snowboard boot and binding apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snowboard boot and binding apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3038875