Land vehicles – Runner vehicle – Standing occupant
Reexamination Certificate
2001-03-09
2003-05-06
Olszewski, Robert P. (Department: 3627)
Land vehicles
Runner vehicle
Standing occupant
C280S014240, C280S613000, C280S618000
Reexamination Certificate
active
06557866
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a snowboard binding, and particularly to a binding that is designed to releasably engage a bottom plate and binding mechanism mounted to a snowboard, with a top plate mounted in a snowboard boot. Upon entry of the top plate into the bottom plate it is made to dislodge any snow or ice that may be present in bottom plate and binding mechanism, and upon full engagement automatically lock using mechanical means creating a secure connection. This snowboard binding also allows the snowboard rider to engage and disengage this mechanism without compromising a standing position in snowy or icy conditions.
2. Description of the Prior Art
The sport of snowboarding requires that the practitioner have a board for gliding on the snow generally referred to as a snowboard. A binding mechanism is needed to effectively hold a rider to the board, and is generally referred to as a snowboard binding. There are numerous bindings available but none solve all the problems associated with the sport of snowboarding. Snowboard bindings can be best categorized by the varied means of engaging the user's boot to the binding itself. Bindings are either manually operated (requiring the user to tighten a buckle and strap with hands before use), or step-in actuated (engaging by the motion of the foot entering the binding and locking in place at completion of entry.) The binding of the present invention being disclosed is of the step-in variety. All of these bindings vary slightly in mechanical make-up, but are all designed to maintain a positive connection between snowboard and rider. Most of these bindings require the user to wear an particular boot and step directly vertically downwardly onto a base piece mounted on a snowboard's surface. An example of such step-in binding devices is disclosed in U.S. Pat. No. 5,890,730, which requires downward force combined with a side-to-side rocking motion in order to engage and lock the binding mechanism. U.S. Pat. No. 5,971,420 is based on a similar concept, but requires a downward force combined with a toe to heel rocking motion where the toe catches and the heel is lowered locking the mechanism.
The manually operated bindings have straps that go over the tops of the users boot which often creates undue pressure and discomfort upon the users feet. Manual bindings require a user to sit or kneel in the snow while buckling or fastening foot straps. This may also be required to remove obstructive snow while in the same sitting or kneeling position.
Referring, in particular, to these step-in snowboard bindings, these types of bindings are complicated to engage when too much snow is present within the mechanism itself. Usually, such accumulation of snow or other foreign matter within the inner structure of the binding requires the user to, manually remove the foreign matter. The present step-in bindings are relatively expensive when compared to manually operated bindings. The large number of moving parts incorporated into the presently available step-in bindings make them susceptible to mechanical failure due to the amount of stress and pressure inflicted on the binding during the actual sport. The present engagement methods previously mentioned for the step-in bindings, namely downward motion engagement, toe to heel engagement, and side to side engagement, all promote blockage due to snow on or in the base piece mounted to the snowboard surface. This creates a barrier of snow between the users boot and the locking mechanism in the base piece. As a result this often times requires a user to sit or kneel in the snow and manually clear the snow from the binding so that it can be engaged.
Accordingly, with these ever-present problems with the current snowboard binding technology there has been a need for a snowboard binding such as the step-in style binding being disclosed that overcomes these shortcomings.
The binding of the present invention being disclosed is relatively inexpensive, simple to engage (not requiring the users hands) and disengage. The present invention being disclosed is very compact and lightweight. This particular binding permits the user to engage the boot into the base from the side horizontally, not directly down onto the binding. This binding, with its simply design comprising only three moving parts, eliminates all blockages due to obstruction by snow and decreases the chances of mechanical malfunctions by lessening the levels of stress and tension. This is particularly beneficial to users in areas which receive large amounts of snowfall. The convenience and ease of use allow a snowboard rider to remain standing during engagement and release of the mechanism even in deep snow, without any manual preparation or removal of snow, and without compromising a standing position. At the same time the binding ensures that a positive connection has been made that can only be disengaged by the rider acting intentionally and not accidentally.
SUMMARY OF THE INVENTION
One object of invention is to provide a new classification of “step-in” binding which slides in from the side, allowing for easy engagement, creates a positive connection, and automatically locks upon full engagement.
Another object of invention is to provide a snowboard binding that will not malfunction when snow is present in the binding by virtue of the sliding action and design of the locking mechanism, wherein snow and other matter that might accumulate on the base portion is simply pushed out of the base as the top plate of the boot engages with the binding.
Yet another object of invention is to provide a snowboard binding that prevents accidental release but still allows the user to disengage the binding easily and quickly, with the use of only one hand and without compromising a standing position. object of invention A further is to provide a snowboard binding
A further object of invention is to provide a snowboard binding that has a minimum number of moving parts and is cost effective to manufacture using the latest technology and materials.
Still another object of invention is to provide a snowboard binding that has an optional orientation of base plate and direction of entry into the binding.
A still further object of invention is to provide a snowboard binding that has variable options for ankle support.
Another object of invention is to provide a snowboard binding that is readily adaptable to all standard snowboards.
These and other objects of the invention are provided by the snowboard binding of the present invention, which is generally rectangular with upper and lower mating components. The upper piece, being the male portion of the snowboard binding, is to be contained on the bottom center surface of a snowboard boot. The lower piece, being the female portion, is to be mounted to the upper surface of a snowboard by conventional means.
The bottom plate's receiving front and rear edges are angled inwardly toward the center at about 45-degrees on each end. There is an aperture pattern centrally located on this bottom plate to allow for mounting to a snowboard. Additionally, this aperture pattern allows user to rotate the bottom plate, horizontally, to any angle that is preferred. The edges of the upper plate are angled upwardly at about a 45-degree angle as to accommodate the outer edges of the bottom plate when in position. Referring to the right and left edges of the bottom plate, a spring loaded locking mechanism is located on the inner edge facing the center of the board. This locking mechanism is designed to be actuated by the top piece sliding into the opposing bottom piece, and then locking the top piece into a fixed position. The edges of the upper plate are angled upwardly by about 45-degree angle as to accommodate the outer edges of the bottom plate when in position. Referring to the right and left edges of the upper plate, a protruding block, located on the same edge as the bottom plate's locking mechanism, receives the bottom plate's spring loaded pin thr
Englehart Jason
Jones Dennis
Christie Parker & Hale LLP
McClellan James S.
Olszewski Robert P.
LandOfFree
Snowboard binding does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Snowboard binding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snowboard binding will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3004450