Snowboard accessory and method for engaging boot with binding

Land vehicles – Ski or skate appliance or attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S637000, C280S814000, C280S014210

Reexamination Certificate

active

06702328

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a snowboard accessory and method for releasably engaging a user with a snowboard, and more particularly to an assisting device for permitting a user to provide an upward bias to a snowboard so that the user may engage a boot with a snowboard binding without having to rely upon a snowboard support surface.
BACKGROUND OF THE INVENTION
For many years, winter snow sports have comprised essentially alpine and Nordic skiing. These disciplines relied on a pair of skis that were removably linked to the user and included a binding system for this purpose. Advances in alpine equipment, for example, lead to the use of step-in bindings. The primary convenience advantage of step-in bindings was to permit the user to engage the ski with the boot without having to significantly manipulate the binding: if the boot was removed properly, the binding would be poised to accept a boot when the user “stepped into” the binding. Similar approaches have been taken with respect to other sports wherein the user is removably linked to the sport equipment, e.g., bicycling.
While the step-in binding and metal glass ski were among the more notable advances in alpine or downhill snow sports, the first truly revolutionary paradigm shift occurred with the introduction of snowboards. In contrast with alpine skiing, the user is linked to a single gliding platform as opposed to two independent platforms (one for each foot). Moreover, the nature of the platform is quite different—a snowboard is generally shorter than alpine skis for a given person and is generally wider than an alpine ski by a factor of 250% to 350%. Another notable distinction, especially over monoskis, is the boot and body position of the user—the user is usually facing at a 45 to 90 degree angle compared to the intended direction of glide. Nevertheless, the construction and mechanics of both are generally similar: use of fiberglass, resins, and metal sheets to form the body of the boards; use of metal edges to enhance performance on hard surfaces; and bindings to engage a specialty boot worn by the user with the board.
As with any new and developing sport, there are bound to be improvements. In the approximately 25 years since Jake Burton, Chuck Barfoot, and Tom Sims introduced snowboards into downhill snow sports, there have been significant improvements with respect to board designs and shapes, selection of materials, types of boots, and types of bindings. In the field of bindings, the most notable improvement has been the introduction of step-in bindings. While sharing similar convenience improvements with its alpine kin, the dynamics involved with snowboards have dictated different design approaches.
The introduction of the snowboard step-in binding was particularly desirable since snowboarders do not have accessories for self-propulsion such as ski poles used by alpine and Nordic skiers. Moreover, because snowboarders are limited to a single gliding platform, they cannot rely upon “skating” (skating is a divergence of the skis to form an extension point with one ski whereby the skier can project forward, and glide on the other ski, and then carryout the process with the other leg) for self-propulsion as alpine and Nordic skiers can. Consequently, snowboarders are relegated to disengaging one foot from the board and using it as the means for self-propulsion. Consequently, and unlike alpine and Nordic skiers, snowboarders are constantly engaging and disengaging one foot from the board. In particular, this event occurs when entering a ski lift line.
A scenario encountered by all snowboarders is to complete a run, glide into the lift line, disengage one boot from the board, propel the board to the lift with the free leg, and use the lift (whether surface lift or chair lift). If a chair lift is being used, it is often times difficult or impossible to re-engage the free boot with the snow board until after leaving the lift equipment and offload area. With the wider-spread usage of step-in bindings on snowboards, the difficulty may be less prevalent, however, there is generally very little time to re-engage and adjacent skiers or boarders may not make it feasible to do so. Consequently, the snowboarder has only one boot engaged with the snowboard during the offload operation. And since most offload stations have a declined ramp to assist in removing skiers and boarders from the immediate offload area, the boarder is forced to use the board with only one boot engaged. The free boot and foot must either be located somewhere on the board, dragged on the snow, or elevated above the snow. The result is often an unintended fall, which may also affect adjacent skiers, especially when three or five other riders are on the lift.
With traditional bindings, the complicated strap systems only permitted the boarder to engage the boot with the binding after offloading. Until now, the only available solution for step-in binding equipped boards was to engage the free boot at the precise time of onloading, or during the lift ride, with the later option involving significant risk to the boarder since he or she must reach down to the board, grip it, and pull it upward to have the boot engage the binding. Thus, it is clear that some means for engaging the free boot with the step-in binding must be found to eliminate the realistic potential of an unintended fall after offloading from the lift or the realistic potential of an unintended fall from the lift while trying to grab the board to provide the necessary upward bias so that the step-in bindings could be engaged.
SUMMARY OF THE INVENTION
In view of the foregoing, the invention is directed to an assisting means for permitting a user to provide an upward force to a snowboard so that the user can engage a free boot with the step-in binding. The means does not otherwise interfere with the user's operation of the snowboard or the lift loading and offloading operations. The invention is generally stowable so that when the board is unattended, it cannot be pilfered by other boarders who may be jealous of the assisting means. Moreover, the invention includes provide a safety feature so that if it does become unintentionally engaged with something other than the user or his/her equipment, it will not cause injury to the user.
The invention is intended to provide the desired assisting means and comprises a binding and boot engagement system having a flexible tether including a first portion and a second portion. A snowboard engaging member is attached at the first portion of the tether to engage a portion of the snowboard or binding thereof. Attached to the second portion is a user engaging member to engage a portion of the user or the user's clothing or other attached accessories, whereby the user is tethered to the snowboard via the system. The snowboard engaging member may be as simple as forming a loop with the tether about a portion of the snowboard or binding thereof, or may comprise a hook, a snap, a carabiner, or any other viable means for securing a tether to an object. Similarly, the user engaging member may comprise forming a loop with the tether about a portion of the user, or may comprise a hook, a snap, a carabiner, or any other viable means for securing a tether to an object.
In a preferred embodiment, the first portion of the tether has low strain properties and is intended to be gripped by the user to urge the snowboard towards the user, thereby permitting the user to engage the free boot with the free binding while the user is on an elevated lift. The second portion is preferably resilient or has a retraction bias to otherwise impart a slight tension force in the tether when the system is installed. In this manner, the system will have a slight tension bias so that the tether does not have slack present therein when not being used by the user. Thus, whether the user is fully flexed or fully extended, the tether will have a slight tension bias present, thereby decreasing the likelihood of the tether inadvertently engaging extraneous structu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Snowboard accessory and method for engaging boot with binding does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Snowboard accessory and method for engaging boot with binding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snowboard accessory and method for engaging boot with binding will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272546

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.