Snow guard

Static structures (e.g. – buildings) – Cover with projecting restrainer; e.g. – snow stop

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S025000, C052S026000, C248S512000, C248S535000, C403S362000, C403S388000, C403S396000

Reexamination Certificate

active

06834466

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a snow guard apparatus and method for providing protection from snow and ice falling from a roof. In one aspect, the present invention relates to a snow guard apparatus and method for installation and attachment of a snow guard to a standing seam metal roof.
2. Background
Metal roofs are found on many types of commercial buildings. Metal roofs typically are placed over a plywood or particle board substructure. A metal roof comprises a plurality of metal roofing panels. Each panel has a longitudinal length to cover a span of a roof section, and the panels are laid side by side to cover the width of the roof section. Each panel preferably includes substantially perpendicular edges running along both the left and right sides, and the roofing panels are located such that their substantially perpendicular edges are abutting, thereby forming a seam. The substantially perpendicular edges of abutting panels are each crimped together or bent downwardly over each other to form a joint. The joint seals the adjoining panels, thereby preventing fluid communication breaching to the roofing substructure below the roofing panels, as well as to the area between each roofing panel. Fluid communication to the substructure leads to the substructure becoming rotted, infested, or otherwise losing or degrading structural integrity. Metal roof installers have devised unique patterns for the joints to prevent the breaching of moisture from the exterior surface of the roofing panels to the interior surface via the roofing panel abutment point.
A snow guard is secured to a metal roof to prevent snow from falling off the metal roof, thereby potentially damaging persons and property located in the fall path. A snow guard is attached either to a roofing panel of the metal roof or to the seam of the abutting roofing panels. One attachment method is by screws or bolts. However, both screws and bolts can puncture the roofing panel or seam where they are driven, thereby destroying the hermeticity of the metal roof. While the snow guard is in place, fluid communication preferably is prevented through the holes created by the screws or bolts. Another possible attachment method is by a set screw. Specifically, the snow guard attaches to a groove, a threaded hole from one side of the snow guard to the groove, and an indented portion located in the groove opposite the threaded hole. The set screw typically has a blunt end.
The snow guard is placed over the seam of the metal roof, and the set screw is threaded through the hole. As the set screw is driven into the threaded hole, the blunt end of the set screw contacts a portion of the seam. Further driving the set screw into the hole causes a portion of the seam in contact with the blunt end of the set screw to be driven toward and into the indented portion located in the groove opposite the set screw hole. Bending the seam secures the useful device onto the seam. The set screw tends to tear the seam at the point where the blunt end of the set screw contacts the seam. Specifically, as the blunt end of the set screw is driven further into the hole and contacts the seam, friction is created between the blunt end of the turning set screw and the seam in forced contact therewith. The friction causes the rotational torque imparted to the blunt end as a result of driving the set screw further into the hole to be transferred to the seam. The transferred rotational torque and friction fatigues the seam, causing it to be turned in the same direction as the set screw, thereby producing tears in the seam at the set screw/seam interface. The tears in the seam degrade the hermeticity of the metal roof, leading to possible fluid communication and deleterious consequences.
Snow guards hold snowloads on seamed metal roofs. Snow guards include plates with vertical splines mounted to roofs with mounting blocks, affixed to the splines, fencing flags affixed on top the blocks, and fencing held by the flags. Such snow guard systems permit leakage of moisture down into the buildings covered by the roofs. Sheet metal panels in building construction building attachments interconnect with a metal panel surface. In northern climates, a snow retention snow guard on a metal roof is needed which controls, inhibits, and impedes the movement of snow or ice or combination of snow and icedown the pitch of the roof.
Sliding snow or ice or a combination of snow and ice from roofs can be hazardous to people, the surrounding landscape, property, and building components. Snow or ice sliding from a roof above an entryway may injure passers-by. Similarly, falling snow or ice damages landscape features, such as shrubs and property or building components, including automobiles or lower roofing portions. Sliding snow or ice can shear off antennas, gutters, or other components attached to a building roof or wall, thereby potentially causing a leak.
The problem of sliding snow or ice is particularly experienced in connection with metal roofs, including raised seam roofs, e.g., standing seam roofs, where there is relatively little friction between the roof and the snow or ice. As used herein, the term “raised seam roof” includes a roof formed by a series of panels interconnected to define longitudinal, raised portions. A snow guard controls movement of snow or ice or a combination of snow and ice across or along selected areas of such metal roofs.
Snow guard devices were developed initially for use on tile and shingle roofs. In one type of configuration for use on such roofs, an L-shaped brace has one leg fastened to the roof and another leg which projects upwardly from the roof. The fastening leg is nailed or screwed into the roof beneath a shingle or tile. By positioning and attaching a plurality of these braces to the roof in substantially linear fashion, linear bars are positioned within and through one or more receiving areas of the respective upwardly projecting legs to provide a fence-like configuration for snow or ice or a combination of snow and ice retention. A plurality of braces for receiving the linear bars are positioned on opposite sides of the roof and are interconnected by a harness assembly. By positioning the brace bar assemblies on both sides of the roof, the snow retention snow guard is held in position.
Other snow retention devices for shingle or tile roofs have utilized a more unitary structure.
Another snow retention device is a snow guard plastic barrier having a generally L-shaped cross-section. The snow guard is installed by smearing the underside of the snow guard with silicon intended to provide a weather seal, positioning the snow guard against the roof surface, and attaching the snow guard to the roof with screws such that the screws penetrate the roofing surface and become anchored into an underlying structural member. An adhesive may be used in place of the screws where desired.
A snow guard device for use on trapezoidal-type, standing seam roofs having 24 inch wide panels comprises a horizontal steel member which spans one panel width. The horizontal member is attached at ends to mounting members which straddle the trapezoidal panel ribs. The mounting members are fastened to the panel ribs by screws.
Snow guard devices may cause the roof to leak. Many of the snow guards are attached to the roof by a screw, nail or other fastener which pierces the roofing surface. Such piercing of the roof leads to undesired leakage because of inadequate sealing or shearing of the fastener by the forces exerted by sliding snow or ice or a combination of snow and ice. In an attempt to prevent leakage, sealants or gaskets or a combination of sealants and gaskets are applied around the holes pierced through the roofing surface. However, these measures complicate installation and may not fully prevent leaks. Alternative methods for the attachment of snow guard devices to roofs such as adhesive bonding may fail to provide secure attachment or may be difficult to install on a sloped surface, particularly where the snow gua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Snow guard does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Snow guard, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snow guard will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3291871

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.