Snap-action pipe coupling retainer with a rhomboidal...

Pipe joints or couplings – Essential catch – Resilient ring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C285S340000, C285S305000

Reexamination Certificate

active

06179347

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a coupling for joining together lengths of pipes, or, for attaching a fitting to a length of pipe, or, for joining fittings to each other.
2. Description of the Related Art
Couplings of this type are well-known in the art, a typical example being illustrated in Mahoney, U.S. Pat. No. 2,458,714 issued Jan. 11, 1949.
The coupling includes a tubular member which internally houses a sealing ring for cooperation with a pipe exterior, and a locking groove for the reception of a locking member, typically, a length of ductile wire or a coil spring which is inserted tangentially through an opening in the wall of the tubular member, and which extends between a groove formed in the tubular member and a juxtaposed groove formed in the outer periphery of the pipe. Thus the coupling includes the tubular member in combination with the locking member.
One disadvantage of such couplings is that the tubular member must first be assembled onto the pipe. The locking member must then be inserted tangentially through the aperture in the wall of the tubular member, and then pushed into encircling relation with the pipe periphery. The locking member is in this manner properly positioned within the internal groove in the tubular member and the external groove in the pipe periphery in bridging relationship therewith.
As will be readily apparent, the locking member can only be inserted tangentially into the tubular member at the time the groove in the interior of the tubular member and the exterior of the pipe periphery are in correct position of axial alignment. This, in turn, demands an extremely close tolerance in the positioning of the pipe and tubular member axially relative to each other for their respective grooves to be in axial alignment with each other. Commonly, a radial abutment is provided on the exterior of the pipe periphery, as taught by Mahoney in U.S. Pat. No. 2,458,714. More conveniently, the abutment can be provided internally of the tubular member as a shoulder that is engaged by the pipe end when the tubular member is correctly positioned over the pipe end.
It is known in the art to provide a locking member for such a coupling that can be withdrawn from the tubular member in the event that it is desired to disassemble the coupling from the pipe. This is done by pulling the locking member circumferentially out of the tubular member by grasping a free end of the locking member that extends out of the tangential opening in the tubular member. There still remains the problem that to secure the tubular member to the pipe, the member must be correctly assembled onto the end of the pipe, and then, and this possibly in a most inconvenient location, the retainer inserted into the tubular member and then forced circumferentially within the coupling into encircling relation with the pipe groove.
SUMMARY OF THE INVENTION
The present invention seeks to overcome this problem by providing a coupling that can be pre-loaded with a retainer prior to its positioning over the pipe end, the retainer being capable of radially outward movement against a resilient bias, and then being capable of snapping into the pipe groove under the resilient bias in order to produce a permanent interconnection between the coupling and the pipe.
According to the present invention, a coupling is provided which includes a retainer that is insertable into and removable from an interior groove in a tubular body through a tangentially extending aperture in the body communicating with the groove.
The retainer is formed from a spring material, such as spring steel or a relatively hard and resilient plastics material such as nylon, that can be provided with spring-like characteristics, the retainer being comprised of a continuous and flexible base band, which has formed along one of its longitudinal edges a plurality of spring fingers extending therefrom. Spring metal is also contemplated.
When inserted into the tubular body to form the coupling, the spring fingers extend radially inwards of the body and terminate on a diameter less than the internal diameter of the body, in this way to provide a multiplicity of spring fingers each extending radially inwards of the body. A portion of each spring finger has a generally cross-sectional configuration which is generally frusto-conical as will be seen in the description hereinbelow.
The spring fingers are configured as ramp cams, which upon insertion of a pipe into the coupling, are cammed in a radially outwards direction, thus permitting the entrance of the pipe into the coupling.
At the time the spring fingers become positioned in alignment with the groove in the pipe periphery, the spring fingers then snap radially inward into the pipe groove under their stored resilient bias, thus to provide a permanent interconnection between the coupling and the pipe.
The retainer can be withdrawn circumferentially from the tubular body by pulling the retainer out of the body in a tangential direction in order to disassemble the coupling.
As noted hereinabove, each spring finger is configured such that, when viewed in cross-section, at least a portion of the finger has a generally rhomboidal cross-sectional configuration. In particular the spring finger will appear to define a rhomboid.
In the latest embodiment, the pipe coupling incorporates an improved retainer member which is structured as a continuous strap-like retainer having a generally rhomboidal cross-sectional configuration at each cross-section, when positioned within the tubular body to form the coupling. Thus, in contrast to the previous embodiments disclosed, the continuous base band is eliminated and the angled spring fingers are replaced by a continuous strap-like member having a generally rhomboidal cross-sectional configuration similar to the cross-sectional configuration of the spring fingers of the previous embodiments.
The latest embodiment of the pipe coupling comprises a tubular body having an inner opening and a transverse peripheral inner groove extending generally radially outwardly of the inner opening, the tubular body further having an aperture which is generally tangential to the inner groove, the aperture further being generally transverse to the central axis of the tubular body and communicating with the inner groove. A retainer member is positionable within the inner groove through the generally tangential opening and removable therefrom, the retainer member being formed of a band of resilient material. As in the previous embodiments, at least a portion of the retainer member has a generally rhomboidal cross-sectional configuration; however in the present and preferred embodiment, the retainer member has a frusto-conical cross-sectional configuration at substantially all cross-sections.
Preferably, the coupling will be used with pipes which incorporate a tapered groove which corresponds to the rhomboidal shaped retainer member to receive the retainer member in nestled relation. However, pipes incorporating a generally rectangular groove as in the previous embodiments may also be used with this coupling.
More particularly, the pipe coupling comprises a generally tubular body defining a generally central axis and having an inner opening and a generally transverse peripheral inner groove extending generally radially outwardly of the inner opening. The generally tubular body has an aperture which is generally tangential to the inner groove and generally transverse to the generally central axis. The generally transverse aperture communicates with the inner groove. A flexible, resilient retainer member has at least two ends, and is positionable within the inner groove by insertion of at least one of the ends into the generally tangential aperture and removable from the inner groove by withdrawal thereof through the generally tangential aperture. At least a portion of the retainer member has a generally rhomboidal cross-sectional configuration such that one arcuate portion is on a first diameter less than an internal diameter of the tubul

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Snap-action pipe coupling retainer with a rhomboidal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Snap-action pipe coupling retainer with a rhomboidal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snap-action pipe coupling retainer with a rhomboidal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2553792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.