Smart isolation mounts with continuous structural elements...

Spring devices – Resilient shock or vibration absorber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C188S378000

Reexamination Certificate

active

06708962

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to the field of vibration management and, in particular, to mounts that prevent the vibrations from being transmitted from vibrating objects to structures to which the vibrating objects are mounted.
BACKGROUND
Alternating disturbances that are imparted to a structure frequently cause the structure vibrate. These disturbances can be internal to the structure. For example, when a gun is fired, the alternating explosions of the bullets within the gun cause the gun to vibrate. The alternating disturbances can also be external to the structure. For example, in military situations the firing action of a gun generates and transmits vibrations to the supporting structure of the gun. The gun supporting structure in turn transmits the generated vibrations through its connecting points to a turret connected to the main structure of a vehicle (e.g., helicopter, airplane, ground vehicle, etc.). The turret transmits the vibrations to the main structure of the vehicle. The transmitted vibrations often damage onboard electronics and increase crew fatigue. In another example, a rotating element of a machine can cause the machine to vibrate. This vibration can be transmitted to structures to which the rotating machine is attached. Vibrations generated by rotating machines should be isolated from the main structure or floor on which the rotating machine rests.
Vibration is typically undesirable. Vibration often results in excessive audible noise that gives rise to safety issues, causes fatigue in mounting structures, and the like. Because of the undesirable effects of vibration, numerous methods have been employed in mounts for gun turrets, rotating machinery, or the like to manage vibration. These methods include both passive and active methods. Passive methods usually involve placing a vibration isolator, absorber, or damper between a vibration source, e.g., gun, rotating machine, or the like, and the structure in which the vibration is undesirable, e.g., helicopter shell, rotating machine mount, or the like. Vibration isolators intercept the vibration energy from the vibration source and prevent it from being transmitted to the structure. Vibration absorbers absorb the energy from the source. Vibration isolators and absorbers can be tuned only to one or a few resonant frequencies and therefore are only effective within a narrow frequency band around the selected frequencies. In some instances, vibration isolators and absorbers can amplify undesired vibrations at certain frequencies. Moreover, vibration isolators are not effective for isolating severe shocks or extreme vibratory loads. Vibration dampers receive vibration energy from the source and dissipate it at a faster rate. Dampers add weight to systems, and their performance is temperature dependent and is limited to near-resonant frequencies.
Many commercial and military applications include vibrations over a broad range of frequencies, rendering the above-mentioned passive vibration control methods ineffective for these applications.
Active vibration control methods include feedback and feed-forward vibration cancellation. Feedback vibration cancellation includes measuring the vibration, feeding the measurement back to a controller, sending a control signal from the controller to an actuator, and using the actuator to apply a force or a moment to counteract the vibration. Feed-forward vibration cancellation includes measuring the vibration, feeding the measurement forward to a controller, sending a control signal from the controller to an actuator, and using the actuator to apply a vibration that is substantially identical to the source vibration, with an appropriate phase shift, at or near the source. These active vibration control methods are expensive and hard to implement. Moreover, these methods require excessive amounts of power in that they are applied globally to all parts of the system and therefore are applied to parts of the system that are irrelevant to system performance.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for mounts that include continuous structural elements with vibration energy managing features, that have broader frequency ranges, that are easy to implement, and that can be applied to only those structural areas where vibration control is critical to system performance and therefore are more power efficient.
SUMMARY
The above-mentioned problems with existing vibration control approaches and other problems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification. Embodiments of the present invention provide a “smart” isolation mount for connecting (or interfacing) a vibration-generating substructure (or subsystem) to a main structure. The isolation mount substantially reduces the transmission of vibrations from the vibration-generating substructure to the main structure. The mount also substantially stabilizes the vibration-generating substructure.
One embodiment provides a mount for connecting a vibration-generating substructure to a main structure that has at least two vibration diverters that mechanically couple the vibration-generating substructure to the main structure. The mount also has a vibration confiner that interconnects the two vibration diverters. Each vibration diverter diverts vibrations from the vibration-generating substructure to the vibration confiner.
Another embodiment provides a mount for connecting a vibration-generating substructure to a main structure that has at least two pairs of vibration diverters. Each pair of vibration diverters mechanically couples the vibration-generating substructure to the main structure. The mount has a pair of first vibration confiners, each interconnecting the respective vibration diverters of each of the two pairs of vibration diverters. The mount also has a second vibration confiner that interconnects the two pairs of vibration diverters. Each vibration diverter diverts vibrations from the vibration-generating substructure to at least one of the first vibration confiners and the second vibration confiner.
Another embodiment provides a mount for connecting a vibration-generating substructure to a main structure. The mount has four first corner regions in a first plane and four second corner regions in a second plane that is vertically displaced from the first plane, where the four first and four second corner regions are disposed between the vibration-generating substructure and the main structure. The mount has at least four first vibration diverters, each disposed at each of the four first corners, and at least four second vibration diverters, each disposed at each of the four second corners, where the four first and four second vibration diverters mechanically couple the vibration-generating substructure to the main structure. The mount also has a pair of first vibration confiners, each interconnecting two of the first corner regions and two of the second corner regions and thereby two of the first vibration diverters and two of the second vibration diverters. Moreover, the mount has a pair of second vibration confiners disposed perpendicularly to the first vibration confiners, each interconnecting two of the second vibration diverters. Each vibration diverter diverts vibrations from the vibration-generating substructure to at least one of the first vibration confiners and the second vibration confiners.
Another embodiment provides a method for controlling vibrations. The method includes receiving the vibrations from a vibration-generating substructure at at least two vibration diverters and diverting the vibrations away from each of the vibration diverters, using the respective vibration diverters, to a vibration confiner that interconnects the vibration diverters.
Another embodiment provides a method for controlling vibrations. The method involves receiving the vibr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Smart isolation mounts with continuous structural elements... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Smart isolation mounts with continuous structural elements..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Smart isolation mounts with continuous structural elements... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3243878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.